
(k,p)-Planar Graphs

A Generalization of Planar Representations for
Cluster Graphs

Timothy W. Randolph
Professor William J. Lenhart, Advisor

A thesis submitted in partial fulfillment of the requirements for the
Degree of Bachelor of Arts with Honors in Computer Science

Williams College
Williamstown, Massachusetts

April 28, 2018



Contents

1 Introduction 8

1.1 What Is a Cluster Graph, and What Is It Good for? . . . . . . . . . . 8

1.2 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Advantages and Applications of (k, p)-Planar Graphs . . . . . . . . . 13

1.3.1 General Advantages of (k, p)-Planar Drawings . . . . . . . . . 13

1.3.2 Small World Networks . . . . . . . . . . . . . . . . . . . . . . 15

1.3.3 Graphs with Mined Substructures . . . . . . . . . . . . . . . . 16

1.3.4 External Partition Graphs . . . . . . . . . . . . . . . . . . . . 16

1.4 Previous Scholarship . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4.1 NodeTrix Representations . . . . . . . . . . . . . . . . . . . . 17

1.4.2 (X, Y )-Clustering Representations . . . . . . . . . . . . . . . 18

1.4.3 Intersection-Link Representations . . . . . . . . . . . . . . . . 19

1.4.4 Vertex Splitting Representations . . . . . . . . . . . . . . . . 19

1.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Relating the (k, p)-Planar Graphs to Other Graph Classes 23

2.1 Definitions for Nonplanar Graph Classes . . . . . . . . . . . . . . . . 24

2.1.1 1-Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 IC-Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 AcNIC-Planar Graphs . . . . . . . . . . . . . . . . . . . . . . 25

2.1.4 TrNIC-Planar Graphs . . . . . . . . . . . . . . . . . . . . . . 25

2.1.5 NIC-Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Relating (k, 1)-Planar Graphs to Established Graph Classes . . . . . 28

2.2.1 Planar (k, 1)-Planar Graphs . . . . . . . . . . . . . . . . . . . 28

2.2.2 IC-Planar (k, 1)-Planar Graphs . . . . . . . . . . . . . . . . . 28

2.2.3 Relating (k, 1)-Planar Graphs when k > 4 . . . . . . . . . . . 30

2.3 Relating (k, 2)-Planar Graphs to Established Graph Classes . . . . . 33

2.3.1 Relating (2, 2)-Planar Graphs . . . . . . . . . . . . . . . . . . 33

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2



Timothy W. Randolph

3 The Density of (k, p)-Planar Graphs 37
3.1 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 A p-Independent Edge Bound Parameterized by Number of Clusters . 40
3.3 A p-Dependent Edge Bound Parameterized by Number of Clusters . . 44
3.4 An Edge Bound Parameterized by Clustering . . . . . . . . . . . . . . 49
3.5 An Edge Bound Parameterized by Number of Vertices . . . . . . . . 50
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Hardness of Deciding (k, p)-Planarity 55
4.1 Hardness of Deciding (k, 1)-Planarity . . . . . . . . . . . . . . . . . . 55
4.2 Hardness of Deciding (2, 2)-Planarity . . . . . . . . . . . . . . . . . . 57

4.2.1 Construction of G . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 If X Is a YES Instance of Planar Monotone 3-SAT, G Is a YES

Instance of (2,2)-Planarity . . . . . . . . . . . . . . . . . . . . 63
4.2.3 If G Is a YES Instance of (2,2)-Planarity, X is a YES Instance

of Planar Monotone 3-SAT . . . . . . . . . . . . . . . . . . . 68
4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Intracluster Representations 72
5.1 (2, p)-Planar Drawings with Marked Crossings . . . . . . . . . . . . . 73
5.2 (k, 2)-Planar Drawings with Intracluster Circle Representations . . . 74
5.3 (k, p)-Planar Drawings with Intracluster Polygon-Circle Representa-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 (k, p)-Planar Drawings with Intracluster Adjacency Matrices . . . . . 78
5.5 Permissive Intracluster Representations . . . . . . . . . . . . . . . . . 80
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Summary and Future Directions 82
6.1 Review of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3



List of Figures

1.1 The “Contiguous USA Graph,” in which each state vertex is connected
by an edge to the state vertices with which it shares a land border.
Reproduced from [21]. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 A planar graph with five vertices. . . . . . . . . . . . . . . . . . . . . 10
1.3 A nonplanar graph with five vertices. . . . . . . . . . . . . . . . . . . 10
1.4 European coauthorship. Reproduced from [11]. . . . . . . . . . . . . . 12
1.5 Node-link and (3, 2)-planar representations of the same graph. . . . . 13
1.6 Examples of intracluster representations and corresponding node-link

drawings. Counterclockwise from top left: no internal representa-
tion, inscribed circle graph, inscribed adjacency matrix, and inscribed
polygon-circle graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 A NodeTrix representation of a coauthorship graph. Reproduced from
[18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.8 Node-link and contracted representations of a (planar, 4-clique)-clustered
graph. Reproduced from [4]. . . . . . . . . . . . . . . . . . . . . . . 18

1.9 An intersection-link representation of a graph partitioned into cliques.
Reproduced from [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 An IC-planar drawing with two disjoint crossing pairs. . . . . . . . . 25
2.2 An AcNIC-planar drawing and associated cp-graph. . . . . . . . . . . 26
2.3 A TrNIC-planar drawing and associated cp-cut-graph. . . . . . . . . . 27
2.4 A NIC-planar drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Corresponding (3, 1)-planar and planar drawings. . . . . . . . . . . . 29
2.6 Corresponding (4, 1)-planar and IC-planar drawings. . . . . . . . . . 29
2.7 K6 is (5, 1)-planar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 K7 is (6, 1)-planar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9 An AcNIC-planar drawing of the graph Gn in the k = 5 case. . . . . . 32
2.10 A crossing pair and corresponding (2, 2)-planar muffin gadget. . . . . 34
2.11 An IC-planar drawing and corresponding (4, 1)-planar drawing. . . . 34
2.12 A (2, 2)-planar drawing of K7. . . . . . . . . . . . . . . . . . . . . . 35

3.1 A (2,2)-planar drawing of a graph G and its corresponding contracted
graph GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4



Timothy W. Randolph

3.2 A (2, 2)-planar drawing Γ and a corresponding skeleton. . . . . . . . . 39
3.3 Two fully connected 3-cluster regions, R1 and R2. . . . . . . . . . . . 42
3.4 The drawing Γ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 One Γ2 subdrawing nested inside a second Γ2 subdrawing. . . . . . . 44
3.6 Two kp-connected 3-cluster regions, R1 and R2, with 2 ports per vertex. 47
3.7 The drawing Γ3,2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.8 One Γ3,2 subdrawing nested inside a second Γ3,2 subdrawing. . . . . 48

4.1 Drawings of G and corresponding graph G′. . . . . . . . . . . . . . . 56
4.2 A rectilinear representation of a planar 3-SAT instance reproduced

from [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 A (2, 2)-planar drawing of a K8− subgraph and K-vertex v. . . . . . 59
4.4 A planar monotone representation of X0. . . . . . . . . . . . . . . . 60
4.5 The variable cycle of G0 with false literal boundaries. . . . . . . . . 61
4.6 Node-link and (2, 2)-planar drawings of the clause gadget Cj. . . . . . 62
4.7 The graph G0 corresponding to X0. Tree structure edges are high-

lighted in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.8 A drawing of the variable cycle of G0 with false literal boundaries

oriented according to A0. . . . . . . . . . . . . . . . . . . . . . . . . 65
4.9 A drawing of the graph G0 with crossings at false literal boundaries

and inside clause gadgets. . . . . . . . . . . . . . . . . . . . . . . . . 66
4.10 Clustering two vertices to remove a crossing at a false literal boundary. 66
4.11 A (2, 2)-planar drawing of the graph G0. . . . . . . . . . . . . . . . . 67
4.12 Possible placements of the clause vertex closedj relative to three clause

boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 A graph G and corresponding (2, 2)-planar drawing with marked cross-
ings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 A (4, 2)-circle-planar drawing of the complete graph K6. . . . . . . . 75
5.3 A (2, 2)-planar graph G that is not (2, 2)-circle planar. K-vertices and

their associated K8− subgraphs are drawn as solid black dots. . . . . 75
5.4 Eliminating a 2-cluster with adjacent ports. . . . . . . . . . . . . . . 76
5.5 A 4-cluster and corresponding triangle-circle graph. . . . . . . . . . 77
5.6 A triangle-circle representation of the wheel graph W6. . . . . . . . . 78
5.7 Node-link and NodeTrix-planar representations of K6. . . . . . . . . 79

5



Abstract

A cluster graph consists of a graph G = (V,E) and a partition of the vertex set V into

clusters V1, V2, ...VC . We refer to an edge (u, v) ∈ E as intracluster if it connects two

vertices in the same cluster and intercluster otherwise. A port drawing of a cluster

graph G is a planar representation of G in which every cluster Vi is associated with a

distinct cluster region Ri, each vertex v ∈ Vi is associated with one or more ports on

the perimeter of Ri, and each intercluster edge (u, v) ∈ E is associated with a simple

curve connecting a port of u to a port of v. A port drawing is planar if no edge curves

cross or enter cluster regions.

Previous cluster graph representations highlight structural features, minimize edge

crossings, or attempt to do both. We introduce the (k, p)-planar drawing, a planar

representation for cluster graphs that generalizes established cluster graph represen-

tations and allows for the flexible representation of cluster subgraphs within cluster

regions. We say that a cluster graph G is (k, p)-planar if G admits a planar port

drawing in which every vertex is associated with at most p ports and no cluster con-

tains more than k vertices. This thesis relates the (k, p)-planar graphs to established

graph classes, bounds the edge density of the (k, p)-planar graphs, provides hard-

ness results for the problem of deciding whether or not a graph is (k, p)-planar, and

considers extensions to the (k, p)-planar drawing schema that introduce intracluster

representations.
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Chapter 1

Introduction

1.1 What Is a Cluster Graph, and What Is It Good

for?

This section is an overture to those, like my parents, who begin to read this thesis

with no prior knowledge of the topics to be discussed. The reader familiar with graph

theory and cluster graphs in particular may wish to skip ahead to Section 1.2.

A graph is the purest and the simplest formalism used to answer the question,

“Which among you are connected in this way?” It consists of two parts: a set of things

and a set explaining which pairs among those things are related. When we observe a

pairwise relation between objects in nature, we might formalize our observations as a

graph and use existing knowledge in the field of graph theory to inform our inferences

about those objects. Conversely, we might seek more precise and profound results

in graph theory in the hope that they can be transmuted into insight about those

worldly objects that we model with graphs already.

Multitudes of real-world problems yield readily to graph theory. In 1741, Leonhard

Euler solved the question of whether or not the seven bridges of the city of Konigsberg

could be crossed without repetition (they could not [15]). In doing so, he began a

long tradition of using graphs to model physical locations and the ways to travel

between them. This is as simple as selecting a set of places (cities, subway stations,

islands, rooms), associating each with a vertex, and connecting each pair of vertices

with an edge if it is possible to travel directly between the corresponding locations.

Optionally, one can add weights to the edges to represent distance or difficulty of
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travel. The result is a conveniently simple, fruitfully abstract model of the world that

begs to be reasoned about.

Figure 1.1: The “Contiguous USA Graph,” in which each state vertex is connected
by an edge to the state vertices with which it shares a land border. Reproduced from
[21].

Some of the most famous problems in mathematics are accessible to this practice.

For example, the Travelling Salesman Problem, or TSP, famously asks, “What is the

shortest distance in which a salesman can travel to each of the following cities?” An

instance of the TSP is most intuitively represented as graph: a set of cities and a set

of distance-marked edges between them. An introduction to the Travelling Salesman

Problem is provided by [9].

However, mutual accessibility is far from the only relation well-modeled by graphs.

Consider the following (entity; relation) pairs:

• people; bosom friends

• people; mortal enemies

• websites; hyperlinked pairs

• wireless towers; tower pairs in broadcast range

• syntactic objects; constituents and root nodes

• individual atoms; bonded pairs

• airports; those with direct connecting flights

• neurons; those connected by axa in a brain

9



Timothy W. Randolph Introduction

• neural nodes; those connected in an artificial neural network

• mathematicians; collaborators

• bioregions; those between which migration is possible

Complex reasoning about each of these domains is possible using the tools of graph

theory. The list above is far from complete.

c

a

d

b

e

Figure 1.2: A planar graph with five vertices.

Graphs are traditionally represented on the plane by drawing each vertex as a point

and drawing a curve between each pair of points if they share an edge, as illustrated

in Figure 1.2. To prevent confusion (and sometimes to manifest a limitation inherent

in the system being modeled) it is often preferable to draw the graph on the plane

in such a way that no edges cross. We call the class of graphs for which this is

possible the planar graphs, and they are fairly easily distinguished from the nonplanar

graphs. However, the task of coming up with the most intelligible representation of

a nonplanar graph is much more difficult than the analogous task for a planar graph.

At present, much energy is focused on discovering ways to render not-quite-planar

graphs most usefully on the plane.

a

b c

d e

Figure 1.3: A nonplanar graph with five vertices.

One sensible approach for rendering nonplanar graphs is to simplify the structure

of the graph by grouping “similar” vertices together. For this task, we turn to the

concept of a partition. In contrast to a graph, which emphasizes pairwise relation-

ships, a partition divides a set of things into groups that are in some way self-similar.

Like graphs, examples of partitions in nature are innumerable. However, consider

just a few (entity; grouping) pairs to spark the imagination:

10
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• people; eye color

• counting numbers; parity

• skittles; flavor

• novelists; genre

• words; part of speech

The notion of a cluster graph combines a graph with a partition, and thus may

represent a set of objects partitioned into groups and simultaneously linked by a pair-

wise relation. In a cluster graph, pairs of objects are connected by edges to indicate

relation, and groups of objects are partitioned into clusters to indicate some common

property. For example, Di Giacomo, Didimo, Liotta, and Palladino considered the

graph of European scholars who had recently published in the journal Graph Drawing,

connecting each pair with an edge if they had collaborated on research, and clustering

groups based on their country of residence [11]. A completed cluster graph represen-

tation, reproduced in Figure 1.4, displays their collaboration both individually and

internationally.

Furthermore, the partition of vertices into clusters need not be semantically dis-

tinct from the relation captured by the graph. In the physical sciences, cluster-

ing is often used to isolate meaningful structure implicit in a graph generated from

experimental data. In this case, clustering is performed automatically by an algo-

rithm trained to detect a particular type of structural commonality. For an accessible

overview of the graph clustering problem, the interested reader is referred to [26].

This thesis unifies established methods for representing cluster graphs on the

plane by introducing a new representation schema, the (k, p)-planar drawing, that is

broad in scope and precise in specification. In a (k, p)-planar drawing, each cluster is

represented by a single contiguous region, and each vertex in a cluster is associated

with one or more access points, called ports, located on the perimeter of the region.

One final note for the lay reader, if she has made it this far. After the introduction,

this thesis contains four main chapters, each of which is composed mostly of technical

results. However, each chapter and each main section is preceded by a summary

paragraph that can serve as an anchor for the reader cast adrift or a lighter substitute

for the meat of each section.

11
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Figure 1.4: European coauthorship. Reproduced from [11].

1.2 Preliminary Definitions

A graph G consists of a set V of vertices and a set E of edges. A cluster graph

consists of a graph G and a partition of the vertex set into clusters V1, V2, ...VC . We

call an edge intracluster if it connects two vertices in the same cluster and intercluster

otherwise.

A graph is k-clustered if no cluster contains more than k vertices.

A port drawing of a cluster graph G is a drawing Γ of G with the following

properties:

• Each cluster Vi is represented by a distinct convex region Ri called a cluster

region. Cluster regions may not intersect or be drawn inside each other.

• Each vertex is represented by one or more distinct points, called ports, on the

12
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perimeter of its cluster region.

• Each intercluster edge (u, v) ∈ E is represented by a simple curve connecting a

port of u to a port of v. Edges may not intersect cluster regions.

We say that a port drawing is planar if no intercluster edges cross.

This thesis considers the classes of (k, p)-planar graphs, the k-clustered graphs that

admit planar port drawings with no more than p ports per vertex. For simplicity, we

will also use the term (k, p)-planar to refer to those unclustered graphs that can be

k-clustered so that the resulting cluster graphs are (k, p)-planar.

Figure 1.5: Node-link and (3, 2)-planar representations of the same graph.

Figure 1.5 compares node-link and (3, 2)-planar drawings of the same nonplanar

graph G. The two clusters are outlined by pink dashes in the node-link drawing at left

and represented by pink cluster regions in the (3, 2)-planar drawing at right. In the

(3, 2)-planar drawing, planarity is achieved by dividing the green, blue, and purple

vertices into two ports each.

1.3 Advantages and Applications of (k, p)-Planar

Graphs

The first part of this section considers the advantages of the (k, p)-planar drawing as

a planar representation schema for cluster graphs. The second part elaborates several

specific applications that motivate the use of (k, p)-planar drawings.

1.3.1 General Advantages of (k, p)-Planar Drawings

This thesis is primarily motivated by the need to better represent the features of large

nonplanar graphs, especially those that exhibit different properties at the global and

13
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local scales. (k, p)-planar drawings are particularly well suited to represent graphs

that are globally sparse but have subgraphs with interesting properties, such as den-

sity, Hamiltonicity, or common membership in an externally defined category. In a

(k, p)-planar drawing, global structure is preserved by intercluster edges and empha-

sized by the requirement that no intercluster edges may cross. The fact that many

nonplanar graphs are (k, p)-planar for small values of k is facilitated by the use of

ports, which allow clustered vertices to be effectively split while remaining tightly

associated with the other vertices in the same cluster.

Figure 1.6: Examples of intracluster representations and corresponding node-link
drawings. Counterclockwise from top left: no internal representation, inscribed circle
graph, inscribed adjacency matrix, and inscribed polygon-circle graph.

The necessary consequence of the use of cluster regions is the omission of intr-

acluster edges. However, because (k, p)-planar drawings leave the area inside the

cluster region empty, various interior representations can be used to highlight intra-

cluster structure. As illustrated in Figure 1.6, high-density clusters can be realized

by a variety of intracluster representations that display them with greater readabil-

ity than traditional node-link drawings. In addition, when the vertices of a graph

are partitioned on the basis of an external representation, such as social group or

geographic location, cluster regions can be annotated to indicate the common fea-

ture of their constituent vertices. Finally, cluster regions corresponding to subgraphs

with particular topological features can be inscribed with representations that high-

14
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light their structure. The reader is referred to Chapter 5 for a survey of intracluster

representations.

A final advantage of the (k, p)-planar graph is its generality. Section 1.4 describes

the way in which (k, p)-planar graphs generalize and incorporate the advantages of

many existing planar representations for cluster graphs.

To illustrate why better planar representations for cluster graphs are necessary,

the following three subsections consider graph applications which provide challenges

for existing representations.

1.3.2 Small World Networks

Small-world networks, introduced in 1998 by Watts and Strogatz [28], are graphs that

are globally sparse but locally dense. They occur naturally in the analysis of social

networks and graphs of interlinked webpages, among other domains. Consider for

example a graph G of friend relationships between users of a large social network.

The chance that any two randomly sampled users are friend-related is small, and

thus G is globally sparse. However, certain subgraphs, such as those corresponding

to families, groups of close friends, and professional organizations, may be almost

completely connected. The interested reader is referred to [24] for an explanation

of the phenomena underlying small-world networks and additional information on

network structure.

The small-world network presents a problem for traditional representations. If

the vertices of a community subgraph are represented near each other, the high edge

density of the subgraph will make the specific relations within the community less

clear. Alternatively, if the vertices of a community subgraph are separated, their

tight-knit structure will be obscured by distance, while their numerous edges may

confuse the global structure of the graph.

Clustering a small-world network by community creates a cluster graph that can

be well-represented by a (k, p)-planar drawing. Within a cluster region, community

relations can either be omitted or represented using an alternative representation

more appropriate for a high-density subgraph. Moreover, the number of necessary

intercluster edge crossings can be mitigated by distributing intercluster edges between

multiple ports.
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1.3.3 Graphs with Mined Substructures

Substructure mining refers to the problem of locating topologically significant sub-

graphs within large graphs, usually graphs of experimental data. Mined subgraphs

include paths and cycles [1, 2], spanning trees [16], and subgraphs with high frequency

[8, 29].

Once located, these substructures must be effectively represented. Although

mined substructures may not be particularly dense, an effective representation should

display them in a way that highlights their features and distinguishes them from the

larger graph. For certain types of subgraphs, such as cycles and trees, representations

that highlight their topology may be preferable. Alternatively, when an algorithm

identifies a structural feature that occurs frequently within subgraphs, an appropriate

representation should focus on this feature. Both of these goals can be accomplished

in a (k, p)-planar graph by clustering mined subgraphs and choosing appropriate in-

tracluster representations.

1.3.4 External Partition Graphs

Instead of arising from the structure of the graph itself, as in the cases of small world

networks and graphs with mined substructures, the partition of a cluster graph may

be only tangentially related or completely independent from the edge-relation. For

example, recall the cluster graph presented in [11] and reproduced as Figure 1.4, in

which author vertices are related by coauthorship and partitioned by nationality.

The representation of an external partition graph shares some desiderata with

those of topological feature graphs and small-world networks. Certain cluster sub-

graphs might be very dense, in which case alternative representations such as inter-

section graphs will be helpful. Other clusters, perhaps in the same graph, might be

sparse or display structural similarities that ought to be highlighted as in feature

graphs. In the case of an external partition, it is particularly important that cluster

representations are contiguous or otherwise unified. (k, p)-planar graphs satisfy each

of these requirements.
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1.4 Previous Scholarship

This section summarizes proposed representations for cluster graphs, evaluates their

use cases, and explains their reduction to (k, p)-planar graphs if applicable. The

various representations demonstrate the trade-offs between emphasizing global and

local features, minimizing edge crossings, and reducing information loss.

1.4.1 NodeTrix Representations

The NodeTrix framework, presented by Henry, Fekete and McGuffin in [18], is a

representation for cluster graphs intended specifically to highlight the local intricacies

and global structure of small-world graphs. NodeTrix represents clusters by drawing

their corresponding adjacency matrices in the plane. In a NodeTrix representation,

each intercluster edge (u, v) is represented by a curve drawn between an adjacency

matrix row or column corresponding to u and an adjacency matrix row or column

corresponding to v. An example NodeTrix representation, reproduced from [18], is

illustrated in Figure 1.7.

Figure 1.7: A NodeTrix representation of a coauthorship graph. Reproduced from
[18].

Several authors have employed, analyzed and extended the NodeTrix framework

[10, 17, 20]. Di Giacomo et al. [13] define an n-NodeTrix-planar graph as a graph

that admits a NodeTrix representation with matrices of dimension at most n and

no crossing edges. n-NodeTrix-planar graphs are readily interpreted as (k, p)-planar

graphs. From the observation that each row and column end can be treated as
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a port, it follows that a 2-NodeTrix-planar representation is equivalent to a (2, 3)-

planar drawing, and that an n-NodeTrix-planar drawing is equivalent to a (n, 4)-

planar drawing for any fixed integer n greater than 2.

1.4.2 (X, Y )-Clustering Representations

In [4], Batagelj et al. explore the possibility of representing cluster graphs using

a method called (X, Y )-Clustering. An (X, Y )-Clustering of a graph is a cluster-

ing such that the graph obtained by contracting each cluster has property X and

each cluster subgraph has property Y . Figure 1.8, reproduced from [4], illustrates a

(planar, 4-clique)-clustered graph.

Figure 1.8: Node-link and contracted representations of a (planar, 4-clique)-clustered
graph. Reproduced from [4].

The authors present (X, Y )-clustering as a representation schema in conjunction

with an interactive system, in which the user is first presented with a node-link

representation of the graph obtained by contracting each cluster and then may click

each contracted cluster vertex to view the intracluster structure. As such, (X, Y )-

clustering does not imply a particular planar representation for cluster graphs for any

fixed X and Y . However, as demonstrated by Figure 1.8, the contracted node-link

representation of a (planar, Y )-clustered graph is equivalent to a (k, p)-planar graph

for some p if each contracted vertex is converted to a cluster region.
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1.4.3 Intersection-Link Representations

In [3], Angelini et al. introduce the intersection-link representation, a planar repre-

sentation for cluster graphs that represents intercluster edges as traditional links and

cluster subgraphs as the intersection graphs of rectangles. Figure 1.9, reproduced

from [3], illustrates an intersection-link representation of a graph partitioned into

cliques.

Figure 1.9: An intersection-link representation of a graph partitioned into cliques.
Reproduced from [3].

Like the (k, p)-planar drawing, the intersection-link representation leverages the

insight that good representations for small world networks can be achieved by rep-

resenting intercluster edges as traditional links and using alternate representations

for dense subgraphs. However, intersection-link representations are more restrictive

than (k, p)-planar graphs. The original formulation of the intersection-link represen-

tation requires that each cluster be a clique and that each vertex be represented by an

identical rectangle. Even if the clique requirement is relaxed, the identical rectangle

requirement ensures that each rectangle can have at most 4 separate exposed perime-

ter sections, with the result that every intersection-link representation is equivalent

to a (k, 4)-planar drawing.

1.4.4 Vertex Splitting Representations

Vertex splitting allows a very different sort of planar representation than those previ-

ously discussed. Following the convention of Eppstein et al. [14], we define the k-split
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operation as the replacement of a single vertex v in a graph with k new vertices such

that each neighbor of v is adjacent to exactly one newly created vertex. We say that

a graph is k-splittable if it can be transformed into a planar graph by k-splitting some

subset of the vertices.

A planar drawing of the graph resulting from a series of k-splits may be regarded

as a planar port representation in which the ports of each vertex are not required to

be located on the perimeter of a cluster region. The vertex splitting approach has

the advantage of flexibility, but it is a poor choice for a cluster graph representation.

Although vertices may be colored and labeled, a planar k-split drawing specifies no

spatial connection between vertices resulting from a split or vertices in the same

cluster, thus obscuring the structure of the original graph.

1.5 Summary of Results

The remainder of this thesis is organized as follows.

Chapter 2 determines relates the classes of (k, p)-planar graphs to established

graph classes. We prove that the (k, 1)-planar graphs are equivalent to the planar

graphs in the k ≤ 3 case, and that the (4, 1)-planar graphs are equivalent to the

IC-planar graphs. We further prove that there exists a (5, 1)-planar graph that is

not NIC-planar and a (6, 1)-planar graph that is not 1-planar. We define the class

of TrNIC-planar graphs and prove that while for any fixed k there exist AcNIC and

TrNIC-planar graphs that are not (k, 1)-planar, the classes of AcNIC and TrNIC-

planar graphs are subsets of the class of (2, 2)-planar graphs. Finally, we prove that

that not all (2, 2)-planar graphs are NIC-planar and not all NIC-planar graphs are

(2, 2)-planar.

Chapter 3 bounds the edge density of the (k, p)-planar graphs. In the first part of

the chapter, we prove two edge bounds parameterized by a given number C of clusters.

In particular, we prove that the number of intercluster edges in a (k, p)-planar graph

with at least three vertices is at most (3C − 6)k2 and at most (kp+ 3)C − 6. Which

bound is smaller depends on the parameters k and p. In addition, we prove that the

first bound is tight when p > 3k and that the second bound is tight when p < k and

k > 1. Corollary to these results, we establish tight bounds on the total number of

edges in a (k, p)-planar graph with C clusters.

The first two bounds presented in Chapter 3 are helpful for determining whether
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a k-clustered graph is too dense to be (k, p)-planar. However, to determine the

maximum edge density of any (k, p)-planar graph on |V | vertices, independent of the

number of clusters, more work is required. In the second part of the chapter, for any

(k, p)-planar graph G = (V,E), we prove the bound

|E| ≤
k∑

i=2

(ci · (ip+ 3 +
i(i− 1)

2
)) + 3c1 − 6, (1.1)

where ci is the number of clusters of size i. Finally, we maximize Equation 1.1 over

all possible clusterings to generate a tight bound for the maximum number of edges

in a (k, p)-planar graph with |V | vertices.

Chapter 4 focuses on the hardness of the (k, p)-planarity decision problem: given

a graph G and fixed values for k and p, is G a (k, p)-planar graph? Because the (k, 1)-

planar graphs are planar when k ≤ 3, and planarity is testable in linear time, deciding

(k, 1)-planarity is a linear time problem when k ≤ 3. Because the (4, 1)-planar graphs

are equivalent to the IC-planar graphs, and deciding if a graph is IC-planar is an NP-

complete problem [7], deciding (4, 1)-planarity is NP-complete. In addition, we prove

that the (k, 1)-planarity problem can be decided in linear time for all k if a clustering

is specified. Finally, we provide a proof that deciding (2, 2)-planarity is NP-complete.

Table 1.1 summarizes the hardness results proved in Chapter 4.

p \ k 1 2 3 4 ≥5

1 in P in P in P NP-
complete

?

2 in P NP-
complete

? ? ?

≥ 3 in P ? ? ? ?

Table 1.1: Hardness of deciding (k, p)-planarity.

Chapter 5 considers extensions of (k, p)-planarity which specify various intraclus-

ter representations. We say that a graph G is (k, p)-X-planar if it admits a (k, p)-

planar drawing in which the interior of each cluster region represents its intracluster

structure according to some representation X. For instance, a graph is (k, 2)-circle-

planar if it admits a (k, 2)-planar drawing in which each cluster region is a circle and

the interior of each cluster region is represented as a circle graph. We also consider

more permissive intracluster representations.
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Chapter 6 concludes the thesis by considering the broader implications of our

results for the potential of the (k, p)-planar graph and discussing possible avenues for

future work.
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Chapter 2

Relating the (k, p)-Planar Graphs

to Other Graph Classes

In this chapter, we examine the relationship between the (k, p)-planar graphs, the pla-

nar graphs, and several classes of nonplanar graphs, including the IC-planar, AcNIC-

planar, NIC-planar, and 1-Planar graphs. We also introduce the class of TrNIC-planar

graphs, a graph class that generalizes the AcNIC-planar graphs and specializes the

NIC-planar graphs.

We begin the chapter by proving that in the k = 1, k = 2, and k = 3 cases,

the (k, 1)-planar graphs are equivalent to the planar graphs. We then prove that the

(4, 1)-planar graphs are equivalent to the IC-planar graphs. Beyond this point, the

relationship between the (k, 1)-planar graphs and established nonplanar graph classes

breaks down. We note that the class of (5, 1)-planar graphs contains the complete

graph K6, which is not NIC-planar, and that the class of (6, 1)-planar graphs contains

the complete graph K7, which is not 1-planar. However, we prove that there exists

an AcNIC-planar graph that is not (k, 1)-planar for any fixed integer k.

If we allow each vertex multiple ports, the task of relating the (k, p)-planar graphs

to established nonplanar graph classes becomes more complicated. We prove that the

TrNIC-planar graphs are a proper subset of the (2, 2)-planar graphs. To conclude the

chapter, we prove that the classes of NIC-planar graphs and (2, 2)-planar graphs are

overlapping but distinct: there exist NIC-planar graphs that are not (2, 2)-planar,

and (2, 2)-planar graphs that are not NIC-planar.

Before beginning, we note that the classes of (k, p)-planar graphs are naturally

related to each other by the following proposition.
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Proposition 1. For any positive integers k0, k1, p0, and p1 with k0 ≤ k1 and p0 ≤ p1,

the class of (k0, p0)-planar graphs is a subset of the class of (k1, p1)-planar graphs.

Proof. Let k0, k1, p0, and p1 be positive integers such that k0 ≤ k1 and p0 ≤ p1,

and let G be a (k0, p0)-planar graph with (k0, p0)-planar drawing Γ. As Γ is also a

(k1, p1)-planar drawing by definition, G is (k1, p1)-planar. Thus we have

(k0, p0)−Planar ⊂ (k1, p1)−Planar.

2.1 Definitions for Nonplanar Graph Classes

In this section, we describe the established graph classes to which we will compare

the (k, p)-planar graphs. These classes are related as follows.

Planar ⊂ IC−Planar ⊂ AcNIC−Planar ⊂ TrNIC−Planar ⊂ 1−Planar.

2.1.1 1-Planar Graphs

The 1-planar graphs, the largest class of nonplanar graphs we consider in this chapter,

are defined as follows.

Definition 1. A graph G is 1-planar if it admits a drawing in which each edge crosses

at most one other edge.

The following subsections define nonplanar graph classes that specialize the 1-

planar graphs.

2.1.2 IC-Planar Graphs

The smallest class specializing the 1-planar graphs that we consider is the class of

Independent Crossing or IC-planar graphs [31]. They are formally defined as follows.

Definition 2. An IC-planar drawing is a drawing in which each edge crosses at most

one other edge and no vertex is adjacent to more than one crossing edge. A graph G

is IC-planar if it admits an IC-planar drawing.
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Figure 2.1: An IC-planar drawing with two disjoint crossing pairs.

We refer to a pair of crossing edges in a nonplanar drawing as a crossing pair, a

helpful definition which allows us to specify the internal structure of several subse-

quent graph classes. Figure 2.1 illustrates an IC-planar drawing with two crossing

pairs.

We define the crossing-pairs graph of a drawing Γ as follows.

Definition 3. The crossing-pairs graph, or cp-graph, of a drawing Γ is the graph

that has a vertex for each crossing pair in Γ and an edge between each pair of vertices

if their corresponding crossing pairs share a vertex.

2.1.3 AcNIC-Planar Graphs

The AcNIC-planar graphs, introduced by Di Giacomo, Liotta, and Tappini in [12],

generalize the IC-planar graphs and specialize the 1-planar graphs. We define the

AcNIC-planar graphs as follows.

Definition 4. An AcNIC-planar drawing is a 1-planar drawing with an acyclic cp-

graph in which no two crossing pairs share more than one vertex. A graph G is

AcNIC-planar if it admits an IC-planar drawing.

Figure 2.2 displays an AcNIC-planar drawing and its corresponding acyclic cp-

graph.

2.1.4 TrNIC-Planar Graphs

The class of AcNIC-planar graphs can be further generalized to the class of TrNIC-

planar graphs, the class of nonplanar graphs whose crossing pairs form a treelike
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(a) An AcNIC-planar drawing Γ with three
adjacent crossing pairs.

(b) The cp-graph associated with Γ.

Figure 2.2: An AcNIC-planar drawing and associated cp-graph.

structure.

The treelike structure underlying a TrNIC-planar drawing is captured by its cp-

cut-graph, which is constructed from a planar drawing Γ by creating a vertex vcp for

each crossing pair in Γ and a hub vertex vh for each vertex in Γ adjacent to two

or more crossing pairs. The cp-cut-graph contains the edge (vh, vcp) if vh and vcp

correspond to an adjacent vertex and crossing pair in Γ. We define the TrNIC-planar

graphs in terms of the cp-cut-graph as follows.

Definition 5. A graph G is TrNIC-planar if it admits a 1-planar drawing Γ with

acyclic cp-cut-graph.

Figure 2.3 illustrates a TrNIC-planar drawing and corresponding cp-cut-graph.

Note that the graph depicted in Figure 2.3 is not AcNIC-planar, as its cp-graph is a

3-cycle.

2.1.5 NIC-Planar Graphs

The class of Nearly IC-planar graphs, or NIC-planar graphs, generalizes the TrNIC-

planar graphs and specializes the 1-planar graphs. It has the following definition.

Definition 6. A graph G is NIC-planar if it admits a NIC-planar drawing, a drawing

Γ in which no two crossing pairs share more than one vertex.
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(a) A TcNIC-planar drawing Γ with three ad-
jacent crossing pairs.

(b) The cp-cut-graph associated with Γ′.

Figure 2.3: A TrNIC-planar drawing and associated cp-cut-graph.

Figure 2.4: A NIC-planar drawing.

Figure 2.4 illustrates a NIC-planar drawing. Note that the cp-graph and the cp-

cut-graph of the graph depicted in Figure 2.4 are both cycles, so the graph is neither

AcNIC-planar nor TrNIC-planar.

With these definitions in hand, we consider the (k, 1)-Planar graphs.
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2.2 Relating (k, 1)-Planar Graphs to Established

Graph Classes

In this section, we prove that the classes of (1, 1)-planar, (2, 1)-planar, and (3, 1)-

planar graphs are equivalent to the class of planar graphs, and that the class of

(4, 1)-planar graphs is equivalent to the class of IC-planar graphs. In the k > 4 case,

the neat correspondence between the (k, 1)-planar graphs and established classes of

nonplanar graphs degrades. We show that there exists a (5, 1)-planar graph that is not

NIC-planar, that there exists (6, 1)-planar graph that is not 1-planar, and that for any

fixed positive integer k, there exists an AcNIC-planar graph that is not (k, 1)-planar.

2.2.1 Planar (k, 1)-Planar Graphs

Theorem 1. For k ≤ 3, a graph G is (k, 1)-planar if and only if it is planar.

Proof. The necessity condition of this proof is trivial, as every planar graph is (1, 1)-

planar and thus (k, 1)-planar for any positive integer k by Proposition 1.

To establish the sufficiency condition, let Γ be a (3, 1)-planar drawing of a graph G.

Replace the ports of each cluster region in Γ with their corresponding vertices, draw

intracluster edges as necessary, and retain the intercluster edges from Γ to generate

a planar drawing of G.

Thus any graph with a (3, 1)-planar drawing is planar. Because the (2, 1)-planar

and (1, 1)-planar graphs are (3, 1)-planar by Proposition 1, this suffices to establish

Theorem 1.

Corresponding (3, 1)-planar and planar drawings of a graph G are depicted in

Figure 2.5.

2.2.2 IC-Planar (k, 1)-Planar Graphs

By replacing the four vertices of a crossing pair with a cluster region, we can effectively

remove the crossing without otherwise changing the drawing in which the crossing pair

is embedded. This insight results in a procedure for representing IC-planar graphs

with (4, 1)-planar drawings, and allows us to prove the following theorem.

Theorem 2. A graph G is (4, 1)-planar if and only if it is IC-planar.
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Figure 2.5: Corresponding (3, 1)-planar and planar drawings.

Proof. First, we prove that the IC-planar graphs are (4, 1)-planar. Given any IC-

planar graph G, let Γ be an IC-planar drawing of G. Replace each crossing pair

with a 4-cluster region to create a (4, 1)-planar drawing Γ′ of G. The application

of this process transforms the IC-planar drawing illustrated in Figure 2.6a into the

(4, 1)-planar drawing illustrated in Figure 2.6b.

Because Γ is an IC-planar drawing, no vertex in Γ is adjacent to more than one

crossing pair, and our clustering places no vertex in more than one cluster. Γ′ is thus

a (4, 1)-planar drawing.

(a) An IC-planar drawing of a graph G. (b) A (4, 1)-planar drawing of a graph G.

Figure 2.6: Corresponding (4, 1)-planar and IC-planar drawings.

Second, we prove that the (4, 1)-planar graphs are IC-planar. Given any (4, 1)-

planar graph G, consider a (4, 1)-planar drawing Γ of G. Replace the ports of each
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cluster region with their corresponding vertices and draw intracluster edges between

the new vertices as necessary to create a drawing Γ′. This process transforms the

(4, 1)-planar drawing illustrated in Figure 2.6b back into the IC-planar drawing il-

lustrated in Figure 2.6a. Because at most four vertices correspond to any cluster in

Γ, drawing the intracluster edges of Γ′ on the plane creates at most one necessary

crossing per cluster. Because no vertex is located in more than one cluster region in

Γ, no vertex in Γ′ is adjacent to more than one crossing pair. Γ′ is thus an IC-planar

drawing.

2.2.3 Relating (k, 1)-Planar Graphs when k > 4

When k > 4, the (k, 1)-planar graphs exceed the nonplanar graph classes considered

in this chapter. However, for arbitrarily large values of k, there remain graphs that

are not (k, 1)-planar. In this section, we prove that there exists a (5, 1)-planar graph

that is not NIC-planar, that there exists a (6, 1)-planar graph that is not 1-planar,

and that for any fixed positive integer k, there exists an AcNIC-planar graph that is

not (k, 1)-planar.

Proposition 2. There exists a (5, 1)-planar graph that is not NIC-planar.

Proof. Zhang proves in [30] that K6 is not NIC-planar. However, K6 is (5, 1)-planar

as illustrated by Figure 2.7. Thus the (5, 1)-planar graphs are not a subset of the

NIC-planar graphs.

Figure 2.7: K6 is (5, 1)-planar.

As a general rule, we observe that the complete graph Kn is always (n − 1, 1)

planar. To create a (n − 1, 1)-planar drawing of Kn, we cluster n − 1 vertices and
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connect their ports to the single remaining vertex. To demonstrate the continued

divergence of the (k, 1)-planar graphs from established nonplanar graph classes, we

consider a second application of this principle.

Proposition 3. There exists a (6, 1)-planar graph that is not 1-planar.

Figure 2.8: K7 is (6, 1)-planar.

Proof. Korzhik proves in [23] that the graph K7 −K3, the complete graph on seven

vertices with the edges of a 3-cycle removed, is not 1-planar, from which it follows

that K7 is not 1-planar. However, K7 is (6, 1)-planar, as illustrated by Figure 2.8.

However, no matter how large k gets, some graphs are not (k, 1)-planar. Although

all IC-planar graphs are (4, 1)-planar by Theorem 2, for any fixed k, some AcNIC-

planar graphs (and thus some TrNIC-planar, NIC-planar, and 1-planar graphs) are

not (k, 1)-planar. The following lemma is necessary for the proof of this result.

Lemma 1. Let G be a graph and let K be a K5 subgraph of G. Any (k, 1)-planar

drawing Γ of G includes at least four vertices of K in the same cluster.

Proof. Assume for contradiction that there exists a (k, 1)-planar drawing Γ of G in

which each cluster includes at most 3 vertices of K. Thus we can remove every port

except those corresponding to vertices in K from Γ to generate a (3, 1)-planar drawing

of K5.

Our assumption implies that K5 is (3, 1)-planar, which by Theorem 1 entails that

K5 is a planar graph. This creates a contradiction as K5 is nonplanar. Thus any
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(k, 1)-planar drawing that includes a K5 subgraph must cluster at least four vertices

of the subgraph together.

Lemma 1 enables us to establish the following theorem.

Theorem 3. For any fixed positive integer k, there exists an AcNIC-planar graph

that is not (k, 1)-planar.

Proof. First, we describe a family of graphs. Let the graph Gn consist of a vertex v

fully connected to n adjacent K4 subgraphs as illustrated in Figure 2.9, which depicts

an AcNIC-planar drawing of G5. Note that we can extend this drawing arbitrarily by

appending additional K4 subgraphs to the end of the chain to create an AcNIC-planar

drawing of Gn for any positive integer n.

v

Figure 2.9: An AcNIC-planar drawing of the graph Gn in the k = 5 case.

Furthermore, the subgraph induced by the vertices of each K4 subgraph and v

is a K5 subgraph. Gn can thus be thought of as a chain of K5 subgraphs, each of

which shares two vertices with each of its neighbors. By Lemma 1, any (k, 1)-planar

clustering of Gn must cluster four vertices from each of the n adjacent K5 subgraphs.

For simplicity, we say that a cluster C covers a K5 subgraph if it contains at least

four vertices from the subgraph. Thus it follows from Lemma 1 that any (k, 1)-planar

clustering of Gn must cover each K5 subgraph with some cluster.
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However, because each K5 subgraph shares two vertices with each of its neighbors,

it is impossible to cover two adjacent K5 subgraphs in Gn with different clusters. Thus

in any (k, 1)-planar drawing of Gn every K5 subgraph in Gn must be covered by the

same cluster C. For a given Gn, this condition can be achieved by a cluster of size

2n + 2 that includes v, each of the n − 1 vertices shared by two K5 subgraphs, and

an additional n+ 2 vertices selected from G as necessary. Such a clustering takes full

advantage of the vertices shared between multiple K5 subgraphs, and thus no more

efficient covering is possible.

Thus any (k, 1)-planar drawing of Gdk/2e requires some cluster which contains more

than k vertices. For any fixed k, Gdk/2e is therefore an AcNIC-planar graph that is

not (k, 1)-planar.

2.3 Relating (k, 2)-Planar Graphs to Established

Graph Classes

In the p = 2 case, we can prove no precise equivalencies between the classes of (k, p)-

planar graphs and the AcNIC-planar, TrNIC-planar, NIC-planar, and 1-planar graph

classes. In this section, we show that the TrNIC-planar graphs, and thus the IC-

planar and AcNIC-planar graphs, are a subset of the (2, 2)-planar graphs. We further

show that there exist NIC-planar graphs, and thus 1-planar graphs, that are not

(2, 2)-planar, but there also exist (2, 2)-planar graphs that are not 1-planar, and thus

not NIC-planar.

2.3.1 Relating (2, 2)-Planar Graphs

In the following proof, we employ the muffin gadget, the (2, 2)-planar drawing of a

crossing pair depicted in Figure 2.10.

We can convert many nonplanar drawings into (2, 2)-planar drawings by replacing

crossing pairs with muffin gadgets. For example, any IC-planar drawing Γ can be

converted into a (2, 2)-planar drawing by replacing each crossing pair with a muffin

gadget as illustrated in Figure 2.11. Because unnecessary edges can be omitted, this

procedure works whether or not the subgraph induced by the vertices of a crossing

pair is a complete K4 or is missing some edges.
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Figure 2.10: A crossing pair and corresponding (2, 2)-planar muffin gadget.

Figure 2.11: An IC-planar drawing and corresponding (4, 1)-planar drawing.

We employ a version of this method to prove that the TrNIC-planar graphs are a

subset of the (2, 2)-planar graphs.

Theorem 4. Every TrNIC-planar graph is (2, 2)-planar.

Proof. Given a TrNIC-planar graph G, we demonstrate the construction of a (2, 2)-

planar drawing of G, which suffices to prove Theorem 4.

Let G be a TrNIC-planar graph, and let Γ be a TrNIC-planar drawing of G

corresponding to the acyclic cp-cut-graph Gcp−cut. Replace each crossing pair in Γ

that corresponds to a leaf of Gcp−cut with a muffin gadget, identifying the vertices

of the muffin gadget with vertices of the crossing pair so that any vertex adjacent

to multiple crossing pairs in Γ remains unclustered. This is possible because each

crossing pair in Γ that corresponds to a leaf of Gcp−cut shares at most one of its
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vertices with other crossing pairs in Γ.

Modify Gcp−cut by deleting each leaf vertex corresponding to a replaced crossing

pair. Then, delete any leaves in Gcp−cut corresponding to hub vertices to produce the

cp-cut-graph of the non-replaced crossing pairs remaining in Γ. By construction, the

vertices of each non-replaced crossing pair in Γ remain unclustered.

Finally, repeat the process of crossing pair replacement and vertex deletion. Be-

cause Gcp−cut is a tree, each iteration of the process creates new leaves of Gcp−cut

until every crossing pair in Γ has been replaced with a muffin gadget. The result is a

drawing of G that is (2, 2)-planar.

Because the TrNIC-planar graphs generalize the AcNIC-planar graphs, it follows

from Theorem 4 that the AcNIC-planar graphs are also a subset of the (2, 2)-planar

graphs. However, some NIC-planar and 1-planar graphs are not (2, 2)-planar. The

following two results establish the existence of (2, 2)-planar graphs that are neither

NIC-planar nor 1-planar and NIC-planar and 1-planar graphs that are not (2, 2)-

planar.

Theorem 5. There exists a (2, 2)-planar graph that is not 1-planar.

Figure 2.12: A (2, 2)-planar drawing of K7.

Proof. As noted in the proof of Proposition 3, the complete graph K7 is not 1-planar.

However, K7 is (2, 2)-planar as illustrated by Figure 2.12.
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As there exist (2, 2)-planar graphs that are not NIC-planar, and the class of NIC-

planar graphs generalizes the TrNIC-planar graphs, the TrNIC-planar graphs are a

proper subset of the (2, 2)-planar graphs.

Theorem 6. There exists a NIC-planar graph that is not (2, 2)-planar.

Theorem 6 follows from the result that there exist NIC-planar graphs that are not

(2, p)-planar for any p, first proved by Tappini in [12].

2.4 Conclusion

In this chapter, we showed that for certain small values of k and p, the classes of

(k, p)-planar graphs are familiar. However, as k and p increase, the family of (k, p)-

planar graphs burgeons. In particular, we showed that the classes of (5, 1)-planar

graphs, (6, 1)-planar graphs and (2, 2)-planar graphs extend beyond the boundaries

of the classes of NIC-planar and 1-planar graphs. The breadth of the class of (k, p)-

planar graphs indicates the range of nonplanar graphs that can be represented by

(k, p)-planar drawings.
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Chapter 3

The Density of (k, p)-Planar Graphs

Understanding the maximum edge density of the (k, p)-planar graphs serves two pur-

poses. First, given a graph G and positive integers k and p, we can rule out the

possibility that G is (k, p)-planar if G is too dense. Second, observing how the maxi-

mum edge density increases with k and p gives us an idea of how quickly the classes

of (k, p)-planar graphs increase in size and how they compare to graph classes with

known maximum densities, such as the planar graphs.

In Sections 3.2 and 3.3, we prove two bounds on the edge density of (k, p)-planar

cluster graphs, both of which are tight for certain values of k and p. First, we prove

that any (k, p)-planar graph with C ≥ 3 clusters has at most

(3C − 6)k2 +
k(k − 1)C

2

edges, a bound that is tight when p ≥ 3k. Second, we prove that any (k, p)-planar

graph with C clusters and at least three vertices has at most

(kp+ 3)C − 6 +
k(k − 1)C

2

edges, a bound that is tight when p < k. In the process of proving these bounds, we

bound the number of intercluster and intracluster edges in a (k, p)-planar graph with

C clusters.

Our first two bounds are useful for computing the maximum number of edges in a

(k, p)-planar graph for which the number of clusters is specified. However, we might

also wish to bound the maximum number of edges in any (k, p)-planar graph with
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|V | vertices. In Sections 3.4 and 3.5, we address this question by proving that any

(k, p)-planar cluster graph with at least three vertices and ci clusters of cardinality i

for i = 1, 2, ..., k has at most

k∑
i=2

(ci(ip+ 3 +
i(i− 1)

2
)) + 3c1 − 6

edges. We then maximize this result over all possible clusterings by case analysis,

which allows us to tightly bound the number of edges in any (k, p)-planar graph

according to the number of vertices in the graph. The statement of this final bound

requires terms introduced in Section 3.5.

3.1 Preliminary Definitions

In this section, we assemble the tools required for our edge bound proofs. In partic-

ular, we introduce Euler’s theorem for planar graphs and two transformations that

associate (k, p)-planar drawings with structurally similar planar graphs. We also

prove a simple bound on the number of intracluster edges in a (k, p)-planar drawing.

Euler’s theorem for planar drawings can be stated as follows.

Theorem 7. (Euler.) For any planar graph G = (V,E) with |V | ≥ 3,

|E| ≤ 3|V | − 6.

Euler’s theorem indicates a natural method for bounding the number of interclus-

ter edges in a (k, p)-planar drawing. First, we specify a transformation that associates

every (k, p)-planar drawing with a planar graph. Then, we demonstrate that applying

our transformation to any (k, p)-planar drawing of a graph G with |E| edges would re-

sult in a nonplanar drawing. This presents a contradiction, and allows us to conclude

that G is not (k, p)-planar.

Our first transformation simplifies a cluster graph by treating each of its clusters

as a single vertex. We contract a cluster graph G by transforming each cluster Vi into

a vertex vi, and adding an edge (vi, vj) if the clusters Vi and Vj were connected by at

least one intercluster edge inG. Figure 3.1 provides an example of this transformation.

We refer to the graph that results from this transformation as the contracted graph

GC of G. If a cluster graph G is (k, p)-planar for some k and p, GC is planar. To
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Figure 3.1: A (2,2)-planar drawing of a graph G and its corresponding contracted
graph GC .

see this, observe that we can transform any (k, p)-planar drawing of G into a planar

drawing of GC by placing a vertex in the center of each cluster region and drawing

edges on top of existing intercluster edges, which do not cross.

Our second transformation converts a (k, p)-planar drawing into a planar drawing

by turning each port into a vertex. We skeletonize a (k, p)-planar drawing Γ as

follows. First, replace each port in Γ with a vertex, and replace each intercluster edge

in Γ with a regular edge. Each cluster region Ri in Γ is now an empty convex space

surrounded by up to kp vertices. Connect these vertices in a cycle and triangulate the

interior to complete the skeletonization. Figure 3.2 demonstrates the skeletonization

of a (2, 2)-planar drawing.

Figure 3.2: A (2, 2)-planar drawing Γ and a corresponding skeleton.

We refer to the drawing resulting from a skeletonization as a skeleton ΓS of Γ.

We use the indefinite article because a graph G may correspond to multiple different

skeletons according to differences in port order and intracluster triangulation. How-
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ever, for our purposes we need not distinguish between different skeletons of the same

graph. Regardless of the skeleton created, skeletonization adds no edge crossings and

thus ΓS is planar. Finally, we note that skeletonizing a cluster region Ri with Pi ports

creates exactly 2Pi − 3 edges if Pi > 1.

Although the maximum number of intercluster edges in a (k, p)-planar graph

depends on several factors, including the number and ordering of ports, the maximum

number of intracluster edges in a (k, p)-planar graph is determined solely by the size

of each cluster. The following bound on the number of intracluster edges in a (k, p)-

planar drawing will be used in each of our edge bound proofs.

Lemma 2. Let G be a (k, p)-planar cluster graph with ci clusters of cardinality i for

i = 0, 1, ..., k. Letting |Eintracluster| be the number of intracluster edges in G, we have

that

|Eintracluster| ≤
k∑

i=2

(ci
i(i− 1)

2
).

Proof. Let G be a (k, p)-planar cluster graph. G has no intracluster edges correspond-

ing to single-vertex clusters. Each cluster of size i > 1 may have at most
(
i
2

)
= i(i−1)

2

intracluster edges. Summing the maximum number of intracluster edges over every

cluster results in our bound.

Finally, we introduce the notion of maximality for (k, p)-planar graphs as an ex-

tension of the notion of maximality for planar graphs. We say that a graph G is

maximal (k, p)-planar if the addition of any edge to G results in a graph that is not

(k, p)-planar.

3.2 A p-Independent Edge Bound Parameterized

by Number of Clusters

In this section, we prove our first bound on the number of edges in a (k, p)-planar

graph with C clusters. We then show that this bound is tight when p ≥ 3k by

demonstrating a family of maximal (k, p)-planar graphs that achieves our bound.
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Theorem 8. For any (k, p)-planar cluster graph G = (V,E) with C ≥ 3 clusters,

|E| ≤ (3C − 6)k2 +
k(k − 1)C

2
.

Proof. Let G = (V,E) be a (k, p)-planar cluster graph with C ≥ 3 clusters. By

Lemma 2, we observe that G has no more than k(k−1)C
2

intracluster edges. Thus it

suffices to show that G has no more than (3C − 6)k2 intercluster edges to establish

Theorem 8.

Let GC = (VC , EC) be the contracted graph of G. Because GC is planar and

|VC | = C ≥ 3 by assumption, Euler’s edge bound implies the following.

|EC | ≤ 3|VC | − 6 = 3C − 6. (3.1)

Because each cluster in G has no more than k vertices, there can be at most k2

edges between any two clusters in G. Thus each edge of GC corresponds to no more

than k2 edges of G, and we have that

|Eintercluster| ≤ |EC |k2. (3.2)

Combining Equations 3.1 and 3.2, we have that

|Eintercluster| ≤ (3C − 6)k2 (3.3)

which in combination with our bound on |Eintracluster| establishes Theorem 8.

We proceed to prove that the edge bound provided by Theorem 8 is tight when

p ≥ 3k. To do so, we demonstrate a family of (k, p)-planar cluster graphs with

precisely (3C − 6)k2 + k(k−1)C
2

edges.

Theorem 9. For any pair of integers k ≥ 1 and C0, there exists a (k, 3k)-planar

graph with C ≥ C0 clusters and (3C − 6)k2 + k(k−1)C
2

edges.

Proof. Given a positive integer k, we demonstrate a (k, 3k)-planar drawing Γk with

C = 3 and the maximum (3C − 6)k2 intercluster edges. We then show show how Γk

can be repeatedly augmented to generate a (k, 3k)-planar drawing with (3C − 6)k2
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intercluster edges for arbitrarily large C. All of our drawings use exclusively clusters of

size k, so we may assume that each corresponds to a (k, p)-planar graph G with k(k−1)C
2

intracluster edges by Lemma 2. These demonstrations suffice to prove Theorem 9.

We say that two cluster regions R1 and R2 in a (k, p)-planar drawing are fully

connected if they are connected by k2 edges as shown in Figure 3.3. On the perimeter

of R1, k ports of R1 serve as the endpoints of k2 edges between R1 and R2. These edges

connect each vertex in V1 to each vertex in V2, which requires the use of k(k− 1) + 1

ports on the perimeter of R2. We refer to the cluster region which uses k ports as

the small end of the full connection and to the cluster region which uses k(k− 1) + 1

ports as the large end of the full connection.

R1 R2

Figure 3.3: Two fully connected 3-cluster regions, R1 and R2.

We refer to any region in our drawing bordered by at least four ports as a free

region. Fully connecting two clusters creates numerous regions adjacent to three ports

and a large free region. We note that exactly k − 2 ports on the small end of a full

connection and k(k− 1)− 1 ports on the large end of a full connection do not border

the free region.

To form the (k, 3k)-planar drawing Γk, fully connect three cluster regions so that

each cluster region is the large end of one full connection and the small end of another,

as shown in Figure 3.4. The resulting drawing has two free regions. Subtracting the

ports rendered inaccessible by each full connection, the two free regions border a total

of

3k · k − (k − 2)− (k(k − 1)− 1) = 2k2 + 3

42



Timothy W. Randolph The Density of (k, p)-Planar Graphs

Figure 3.4: The drawing Γ2.

ports from each cluster region. In Γk, we split the unused ports so that k2 + 1 ports

of each cluster region border both the interior and the exterior free region.

Γk has 3 clusters and 3k2 intercluster edges. When C = 3,

3k2 = (3C − 6)k2,

so Γk is a maximal (k, 3k)-planar drawing.

To extend our construction, nest one copy of Γk inside another as illustrated in

Figure 3.5. Fully connect each cluster in the inner copy of Γk to two clusters in the

outer copy of Γk, as the small end of one full connection and the large end of another

full connection. Subtracting one port which can be used by both connections, this

requires

k + (k(k − 1) + 1)− 1 = k2

accessible ports, which is guaranteed by construction.

Our new drawing has three additional clusters and 9k2 additional edges, and thus

remains maximal. Moreover, the interior of the drawing has space to embed a further

Γk subdrawing. Thus we can repeat our nesting operation an arbitrary number of

times to generate a drawing of a maximal (k, 3k)-planar graph with at least C0 clusters

for arbitrarily large values of C0.
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Figure 3.5: One Γ2 subdrawing nested inside a second Γ2 subdrawing.

3.3 A p-Dependent Edge Bound Parameterized by

Number of Clusters

In this section, we prove our second bound on the number of edges in a (k, p)-planar

graph with C clusters. We then show that this bound is tight when p < k by

demonstrating a family of maximal (k, p)-planar graphs that achieves our bound.

Theorem 10. For any (k, p)-planar cluster graph G = (V,E) with |V | ≥ 3,

|E| ≤ (kp+ 3)C − 6 +
k(k − 1)C

2
.

.

Proof. Let G = (V,E) be a (k, p)-planar cluster graph. By Lemma 2, we observe that

G has no more than k(k−1)C
2

intracluster edges. Thus it suffices to show that G has

no more than (kp+ 3)C − 6 intercluster edges to establish Theorem 10.
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Let Γ be a (k, p)-planar drawing of G, let ΓS be a skeleton of Γ, and let GS =

(VS, ES) be the graph represented by ΓS. Because GS is planar and |VS| ≥ |V | ≥ 3

by assumption, Euler’s edge bound implies the following.

|ES| ≤ 3|VS| − 6. (3.4)

Let Eintercluster refer to the set of intercluster edges of G, and let Pi be the set of

ports on the perimeter of cluster region Ri in Γ. |ES| is equal to |Eintercluster| plus the

number of edges added in place of each cluster region of Γ to create ΓS. If |Pi| > 1,

skeletonizing Ri creates 2|Pi| − 3 additional edges, and if |Pi| = 1, skeletonizing Ri

creates 0 = 2|Pi| − 2 additional edges. Thus, letting c1 be the number of singleton

clusters in Γ, we have that

|Eintercluster|+
C∑
i=1

(2|Pi| − 3) + c1 = |ES|. (3.5)

By subtracting terms from the lefthand side of Equation 3.5 and substituting for

|ES| according to Equation 3.4, we conclude that

|Eintercluster| ≤ 3|VS| − 6−
C∑
i=1

(2|Pi| − 3)− c1. (3.6)

Substituting
∑C

i=1 |Pi| with |VS| and factoring out the rest of the summation, we

have

|Eintercluster| ≤ |VS|+ 3C − 6− c1. (3.7)

Finally, because |VS| ≤ kpC, we have that

|Eintercluster| ≤ (kp+ 3)C − 6− c1 ≤ (kp+ 3)C − 6. (3.8)

Theorem 10 is intended to bound the number of edges in a (k, p)-planar drawing

based solely on a given number C of clusters, so we omit the c1 term from our final

result. For a more precise bound that incorporates the number of clusters of each

cardinality, the reader is referred to the proof of Theorem 12 in Section 3.4.
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We proceed to prove that the edge bound provided by Theorem 10 is tight when

p < k. To do so, we demonstrate a family of (k, p)-planar cluster graphs with precisely

(kp+ 3)C − 6 + k(k−1)C
2

edges.

Theorem 11. For any integers k, p and C0 such that k > p > 0, there exists a

(k, p)-planar graph with C ≥ C0 clusters and (kp+ 3)C − 6 + k(k−1)C
2

edges.

Proof. Given integers k and p such that k > p > 0, we demonstrate a general (k, p)-

planar drawing Γk,p with C = 3 and the maximum (kp+3)C−6 intercluster edges. We

then show how Γk,p can be repeatedly augmented to generate a (k, p)-planar drawing

with (kp+ 3)C − 6 intercluster edges and an arbitrarily large number of clusters. All

of our drawings use k-clusters exclusively, so we may assume that each corresponds

to a graph with k(k−1)C
2

intracluster edges by Lemma 2. These demonstrations suffice

to prove Theorem 11.

We say that two cluster regions R1 and R2 are kp-connected if they are connected

by kp + 1 edges as shown in Figure 3.6. On the perimeter of R1, p + 1 ports of R1

corresponding to k distinct vertices serve as the endpoints of kp+ 1 edges. p ports of

R1 are adjacent to k edges each, and 1 additional port is adjacent to one additional

edge. On the perimeter of R2, p(k − 1) + 1 ports serve as the endpoints for edges

from R1. We refer to the cluster region that uses p + 1 ports as the small end of

the kp-connection and the region that uses p(k − 1) + 1 ports as the large end of

the kp-connection. We place ports around the perimeter of each cluster region in

a consistent sequence, which ensures that any two cluster regions with p + 1 and

p(k − 1) + 1 facing ports may be kp-connected to each other.

kp-connecting two clusters creates numerous regions adjacent to three ports and a

large free region. We note that exactly p−1 ports on the small end of a kp-connection

and p(k − 1) − 1 ports on the large end of a kp-connection do not border the free

region.

To form the (k, p)-planar drawing Γk,p, kp-connect three clusters so that each is

the small end of one kp-connection and the large end of another, as shown in Figure

3.7. Subtracting the ports rendered inaccessible by each kp-connection, the interior

and exterior regions of Γk,p border a total of

k · p− (p− 1)− (p(k − 1)− 1) = 2

ports from each cluster region. Thus the interior and exterior regions are each adjacent
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R1 R2

Figure 3.6: Two kp-connected 3-cluster regions, R1 and R2, with 2 ports per vertex.

Figure 3.7: The drawing Γ3,2.

to one port from each cluster.

Γk,p has 3 clusters and 3(kp+ 1) intercluster edges. As in the C = 3 case,

3(kp+ 1) = (kp+ 3)3− 6 = (kp+ 3)C − 6,
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Γk,p is a maximal (k, p)-planar drawing.

Figure 3.8: One Γ3,2 subdrawing nested inside a second Γ3,2 subdrawing.

To extend Γk,p, nest one copy of Γk,p inside another as illustrated in Figure 3.8.

Triangulate the six ports accessible from the interior of the outer copy of Γk,p to create

an additional six edges.

Our new drawing has three additional clusters and 3(kp+3) additional edges, and

thus remains maximal. Moreover, the interior of our new drawing has space to embed

a further Γk,p subdrawing. Thus we can repeat our nesting operation an arbitrary

number of times to generate a drawing of a maximal (k, p)-planar graph with at least

C clusters for arbitrarily large values of C.
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3.4 An Edge Bound Parameterized by Clustering

In this section, we employ a method similar to the proof of Theorem 10 to establish

a bound on the number of edges in a (k, p)-planar cluster graph that depends on

the cardinality of each cluster. We can then compute the maximum bound over all

possible clusterings to generate a bound parameterized by k, p, and |V | alone.

The result is as follows.

Theorem 12. Let G = (V,E) be a (k, p)-planar cluster graph with |V | ≥ 3, and let

ci denote the number of clusters of G with cardinality i for all i = 0, 1, ..., k. Then

|E| ≤
k∑

i=2

(ci(ip+ 3 +
i(i− 1)

2
)) + 3c1 − 6.

Proof. Let G = (V,E) be a (k, p)-planar cluster graph, let Γ be a (k, p)-planar draw-

ing of G, let ΓS be a skeleton corresponding to Γ, and let GS = (VS, ES) be the

graph corresponding to ΓS. Finally, let Eintercluster and Eintracluster refer to the sets

of intercluster and intracluster edges of G.

First, recall Equation 3.7 from Section 3.3, which states,

|Eintercluster| ≤ |VS|+ 3C − 6− c1. (3.9)

Upon inspection, this bound on |Eintercluster| is maximized when |VS| is maxi-

mized, which occurs when ΓS corresponds to a (k, p)-planar drawing with exactly p

ports per vertex. Any (k, p)-planar drawing can be transformed into an equivalent

(k, p)-planar drawing with the maximum number of ports by adding ports until every

vertex is associated with exactly p ports. Because this transformation changes neither

|Eintercluster| nor |Eintracluster|, we may assume without loss of generality that Γ is a

(k, p)-planar drawing in which each vertex is associated with exactly p ports.

Thus ES consists of Eintercluster as well as 2ip− 3 skeleton edges created for each

cluster of size i > 1. We have that

|Eintercluster|+
k∑

i=2

ci(2ip− 3) = |ES|. (3.10)

As |VS| ≥ |V | ≥ 3 by assumption, Euler’s edge bound guarantees that |ES| ≤
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3|VS| − 6. Furthermore, as every vertex in G is associated with p ports in Γ, |VS| =∑k
i=2(ciip) + c1. Combining these results with Equation 3.10, we have that

|Eintercluster|+
k∑

i=2

ci(2ip− 3) ≤ 3(
k∑

i=2

(ciip) + c1)− 6 (3.11)

which reduces to

|Eintercluster| ≤
k∑

i=2

(ciip+ 3ci) + 3c1 − 6. (3.12)

By Lemma 2, we have that

|Eintracluster| ≤
k∑

i=2

(ci
i(i− 1)

2
). (3.13)

As |E| = |Eintercluster|+ |Eintracluster|, summing Equations 3.12 and 3.13 yields

|E| ≤
k∑

i=2

(ci(ip+ 3 +
i(i− 1)

2
)) + 3c1 − 6, (3.14)

which completes the proof.

Theorem 12, like Theorem 10, computes an upper bound on the number of inter-

cluster edges by counting the number of edges that would be created by triangulating

the ports of a (k, p)-planar drawing in intercluster space. Such a triangulation is al-

ways possible in the p = 1 case, in which every port corresponds to a distinct vertex.

Thus the bound provided by Theorem 12 is tight, at least for p = 1.

3.5 An Edge Bound Parameterized by Number of

Vertices

Theorem 12 applies to (k, p)-planar graphs with a fixed clustering. In this section,

we prove an edge bound for (k, p)-planar graphs that depends solely on k, p, and |V |
by maximizing Theorem 12 over every possible clustering.

Given a (k, p)-planar graph G = (V,E) with |V | ≥ 3, we can view Theorem 12

as a function that takes as input a partition P of V and returns a bound on the

maximum number of edges in a (k, p)-planar drawing of G according to P . For the
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sake of simplicity, in this section we treat vertices as identical elements and treat

partitions with the same number of clusters of each cardinality as equivalent. Using

these conventions, we can bound the maximum number of edges in any (k, p)-planar

drawing of G by maximizing the function

f(P ) =
k∑

i=2

(ci(ip+ 3 +
i(i− 1)

2
)) + 3c1 (3.15)

over all partitions P of V , where ci denotes the number of clusters of cardinality i in

P . f(P ) is identical to the right side of the bound provided by Theorem 12 except

for the omission of the constant term -6.

The function f can be conceived of as a sum that increases by a certain number

for each vertex in V . Thus each vertex in a cluster of cardinality 1 increases f(P ) by

3, and each vertex in a cluster of cardinality i increases f(P ) by

ip+ 3 + i(i−1)
2

i
=
i− 1

2
+ p+

3

i
.

We formalize this statement of the problem by defining the following function that

tracks the contribution of each vertex in V to f according to P .

Definition 7. For p ∈ Z+, the edge efficiency function ηp : Z+ → R is defined

ηp(i) =

{
3 if i = 1

i−1
2

+ p+ 3
i

otherwise.
(3.16)

By construction, the function f can be restated as the sum of the edge efficiency

function over all vertices. Letting V (vi) denote the cluster corresponding to the vertex

vi in P , we have

f(P ) =

|V |∑
i=1

ηp(|V (vi)|). (3.17)

For every positive integer p, the edge efficiency function ηp is non-decreasing,

indicating that larger values of f correspond to partitions P composed of larger

clusters. In particular, we note that ηp(1) ≤ ηp(2) = ηp(3) and that ηp(i) increases

monotonically over the integers greater than two.

The following technical lemma is necessary for our edge bound proof.
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Lemma 3. Let G = (V,E) be a graph. Then there exists a partition P ∗ on V with

|P ∗| =
⌈
|V |
k

⌉
that maximizes the function f .

Proof. Let G = (V,E) be a graph. Assume for contradiction that no partition of

cardinality
⌈
|V |
k

⌉
maximizes f . Thus there exists a partition P of V , with |P | >

⌈
|V |
k

⌉
,

such that f(P ) > f(Q) for all partitions Q with |Q| < |P |.
Because |P | >

⌈
|V |
k

⌉
, we can identify a cluster Vj ∈ P with minimal cardinality

and distribute the vertices of Vj among other clusters in P to create a partition P0

on V with |P0| = |P | − 1. P0 and P contain the same vertices, but P0 assigns each

vertex to a cluster of the same size or larger than the cluster to which it is assigned

by P .

As the edge efficiency function ηp(i) is non-decreasing, we have that f(P0) ≥ f(P )

by Equation 3.17, which contradicts our assumption. Thus some partition P ∗ on V

with |P ∗| =
⌈
|V |
k

⌉
maximizes f .

.

These observations allow us to prove the following general edge bound.

Theorem 13. Let G = (V,E) be a graph with |V | ≥ 3, and let q and r be integers

such that |V | = qk + r, 0 ≤ r < k. If r 6= 1 or p+ 2 ≤ k,

|E| ≤ qk ηp(k) + r ηp(r)− 6,

and if r = 1 and p+ 2 > k,

|E| ≤ (q − 1)k ηp(k) + (k − 1) ηp(k − 1) + 2 ηp(2)− 6.

Proof. Let G = (V,E) be a (k, p)-planar graph with |V | ≥ 3, and let q and r be

integers such that |V | = qk+ r, 0 ≤ r < k, determined by the division algorithm. Let

P ∗ be a partition of V with |P ∗| =
⌈
|V |
k

⌉
that maximizes f . Let Q = {V1, V2, ..., Vq+1}

be the partition of V with |Vi| = k for i = 1, 2, ..., q and |Vq+1| = r. If r = 0, remove

the empty set Vq+1 from Q.
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To establish the first equation of Theorem 13, we show P ∗ = Q when r 6= 1. The

second equation of Theorem 13 results from an exception to our proof in the r = 1

case.

Case 1. Suppose r = 0. In this case, |P ∗| =
⌈
|V |
k

⌉
= |V |/k = |Q|. When k divides

|V |, there is exactly one partition of cardinality |V |
k

, so P ∗ = Q.

Case 2. Suppose r > 1 and assume for contradiction that P ∗ 6= Q. Let Vmin be a

cluster of P ∗ with minimal cardinality. Because P ∗ 6= Q by assumption, P ∗ contains

a second cluster Vn such that |Vmin| ≤ |Vn| < k.

Assume for contradiction that |Vmin| ≤ 2. If |Vmin| = 1, then the single vertex in

Vmin could be added to Vn to create a partition with fewer than |P ∗| clusters. This is

contradictory, as |P ∗| is minimal by construction.

Suppose instead that |Vmin| = 2. If |Vn| < k − 1, or if there existed a second

partition Vm with |Vm| < k, then the vertices of Vmin could again be distributed

among other clusters, causing a contradiction by creating a partition smaller than

|P ∗|. As |Vn| < k, we are left to conclude that that Vn is the only cluster in P ∗ apart

from Vmin with cardinality less than k and that |Vn| = k − 1. However, this implies

that r = 1 and contradicts our case hypothesis. Thus |Vmin| > 2.

Let P ∗0 be the partition of V created by moving a vertex from Vmin to Vn. The

addition of the vertex to Vn increases f(P ∗0 ) relative to f(P ∗), while the removal of

the vertex from Vmin decreases f(P ∗0 ) relative to f(P ∗). In particular, the addition of

the vertex to Vn increases f by

((|Vn|+ 1)p+ 3 +
|Vn + 1||Vn|

2
)− (|Vn|p+ 3 +

|Vn||Vn − 1|
2

) = p+ |Vn|,

and the removal of the vertex from Vmin decreases f by

(|Vmin|p+3+
|Vmin||Vmin − 1|

2
)−((|Vmin|−1)p+3+

|Vmin − 1||Vmin − 2|
2

) = p+|Vmin|−1.

In total, moving the vertex from Vmin to Vn increases f(P ∗0 ) by

(p+ |Vn|)− (p+ |Vmin| − 1) = |Vn| − |Vmin|+ 1 ≥ 1

relative to f(P ∗). This is a contradiction, and thus P ∗ = Q in the r > 1 case.

Case 3. Suppose r = 1. In this case, our argument is identical to Case 2 except

for the possibility that |Vmin| = 2, in which case |Vn| = k − 1. Consider P ∗0 , the
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partition of V created by moving a vertex from Vmin to Vn, when |Vmin| = 2. Adding

a vertex to Vn increases f by p+ |Vn| = p+ k− 1, but removing a vertex from |Vmin|
decreases f by

(|Vmin|p+ 3 +
|Vmin||Vmin − 1|

2
)− 3 = 2p+ 1.

Thus moving a vertex from Vmin to Vn results in a net change of (p+k−1)−(2p+1) =

k − (p + 2). Thus when r = 1 and p + 2 > k, f(P ) is maximized by the clustering

in which all clusters have size k except for clusters Vn and Vmin with |Vn| = k − 1,

|Vmin| = 2.

Case 3 accounts for the caveat in Theorem 13. However, unless r = 1 and p+2 > k,

we have that |E| ≤ qk ηp(k) + r ηp(r)− 6 according to the maximal partition Q.

Because Theorem 13 reflects a specialized case of Theorem 12, the bound provided

by Theorem 13 is likewise tight in the p = 1 case.

3.6 Conclusion

In this chapter, we first proved two bounds on the maximum edge density of (k, p)-

planar cluster graphs with C clusters. The first bound, which depends on the maxi-

mum number of ports per vertex, becomes tight when the number of ports is limited.

The second bound, which is independent of the maximum number of ports per vertex,

becomes tight when enough ports are allowed to fully connect any two clusters. The

problem of finding a tight edge bound in the k ≤ p < 3k case remains open.

In the second part of the chapter, we proved a bound on the maximum edge density

of (k, p)-planar cluster graphs with fully specified clusterings. Then, we analyzed this

bound over all possible clusterings to generate a bound parameterized by k, p, and

|V | alone. Both bounds are tight in the p = 1 case.
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Chapter 4

Hardness of Deciding

(k, p)-Planarity

In this chapter, we address the hardness of the (k, p)-planarity decision problem:

given positive integers k and p and a graph G, does G admit a clustering such that

the resulting cluster graph is (k, p)-planar?

In Section 4.1, we consider the hardness of deciding (k, 1)-planarity. When k ≤ 4,

the hardness of deciding (k, 1)-planarity follows from the results proved in Chapter 2.

In addition, we consider a modified version of the (k, 1)-planarity decision problem

in which a fixed clustering is specified. We prove that when a clustering is fixed,

(k, 1)-planarity is decidable in linear time for all positive integers k.

In Section 4.2, we prove that deciding (2, 2)-planarity is NP-complete by reduction

from Planar Monotone 3-SAT.

4.1 Hardness of Deciding (k, 1)-Planarity

In Section 2.2.1, we proved that the classes of (1, 1)-planar graphs, (2, 1)-planar

graphs, and (3, 1)-planar graphs are equivalent to the class of planar graphs. The

planarity of a graph can be tested in linear time [19], so (k, 1)-planarity can be tested

in linear time for k ≤ 3.

In Section 2.2.2, we proved that the (4, 1)-planar graphs are exactly the IC-planar

graphs. As testing IC-planarity is NP-complete [7], the (4, 1)-planarity decision prob-

lem is NP-complete. The hardness of testing (k, 1)-planarity for k > 4 remains an
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open problem.

The problem of deciding (k, 1)-planarity for a graph G with a fixed clustering is

significantly easier than the general case. In fact, the (k, 1)-planarity decision problem

for cluster graphs can be reduced to the problem of planarity testing.

Theorem 14. Let G = (V,E) be a graph and let P be a partition of V . Given a

positive integer k, we can determine whether or not G admits a (k, 1)-planar drawing

clustered according to P in linear time.

Proof. Let G = (V,E) be a graph and let P be a partition of V . If any cluster in

P has cardinality greater than k, we can reject G immediately. We proceed with the

assumption that every cluster in P has cardinality at most k.

We construct a graph G′ that is planar if and only if G is (k, 1)-planar. Because

G′ can be constructed in linear time, this suffices to prove Theorem 14.

Construct G′ from G as follows. Add a vertex uj to G for every cluster Vj ∈ P .

Then, for each vertex v ∈ Vj, add the edge (v, uj). Every cluster Vi ∈ P is thus

represented by a star subgraph Si ⊂ G′.

We proceed to prove that that G is (k, 1)-planar if and only if G′ is planar.

(a) A (3, 1)-planar drawing of a graph G. (b) A planar drawing of a graph G′.

Figure 4.1: Drawings of G and corresponding graph G′.

First, suppose that G is (k, 1)-planar and let Γ be a (k, 1)-planar drawing of G.

Γ can be transformed into a planar drawing of G′ by placing a vertex ui inside each

cluster region Ri, connecting ui to each port of Ri, and removing the cluster boundary.
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This process transforms the (k, 1)-planar drawing illustrated in Figure 4.1a into the

planar drawing illustrated in Figure 4.1b.

Likewise, suppose that G′ is planar and let Γ′ be a planar drawing of G′. Γ′ can

be transformed into a (k, 1)-planar drawing of G by tracing the perimeter of a cluster

region Ri around the spokes of Si as tightly as necessary to ensure that no intercluster

edges intersect Ri. Remove each vertex ui and edges adjacent to ui. The result is a

(k, 1)-planar drawing Γ of G. This process transforms the planar drawing illustrated

in Figure 4.1b into the (k, 1)-planar drawing illustrated in Figure 4.1a.

As G is planar if and only if G′ is planar, we can test the (k, 1)-planarity of G

according to P in linear time by constructing G′ and performing a planarity test.

4.2 Hardness of Deciding (2, 2)-Planarity

In this section, we present a proof that the (2, 2)-planarity decision problem, or (2, 2)-

Planarity, is NP-complete. The proof is by reduction from Planar Monotone 3-SAT,

a problem shown to be NP-complete by de Berg and Khosravi [5].

A few definitions are necessary for the reduction. First, an instance of 3-SAT

consists of a boolean expression F , where F is in conjunctive normal form and each

clause in F contains exactly three literals. We say that an instance of 3-SAT is

monotone if every clause consists solely of non-negated or solely of negated literals,

and refer to such clauses as positive and negative clauses, respectively. We say that

a 3-SAT instance with a set of variables X and a set of clauses C is planar if the

graph G with vertex set X ∪ C and edges between every clause and its constituent

variables is planar.

A rectilinear representation of a planar 3-SAT instance is a drawing of G in which

each variable and clause is represented by a rectangle, all the variable rectangles are

drawn along a horizontal line, the edges connecting variables and clauses are repre-

sented by vertical line segments, and the whole drawing is crossing free. Knuth and

Raghunatan [22] showed that every graph corresponding to a planar 3-SAT instance

has a rectilinear representation. A monotone rectilinear representation is a recti-

linear representation of a graph G corresponding to a monotone instance of planar

3-SAT. Additionally, in a monotone rectilinear representation, all positive clauses are

drawn above the line of variables and all negative clauses are drawn below the line of

variables.
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Figure 4.2 provides an example of a rectilinear representation. Note that in every

rectilinear representation, the variables can be connected by a planar cycle. More-

over, in a monotone rectilinear representation, this cycle separates the positive clause

rectangles from the negative clause rectangles.

Figure 4.2: A rectilinear representation of a planar 3-SAT instance reproduced from
[5].

In [5], de Berg and Khosravi show that given a monotone rectilinear representation

X corresponding to an instance F of 3-SAT, it is NP-complete to determine if F has

a satisfying assignment. We refer to this decision problem as Planar Monotone 3-

SAT. Because Planar Monotone 3-SAT is NP-complete, reducing (2, 2)-Planarity to

this problem demonstrates that (2, 2)-Planarity is NP-hard. The following lemma is

necessary for the proof.

We refer to the graph created by removing two adjacent edges from the complete

graph K8 as K8−, and to the single vertex of K8− with degree 5 as a K-vertex. We

use the phrase adding a K-vertex to a graph G to refer to the operation of adding a

K8− subgraph and associated K-vertex. For example, given a graph G = (V,E) and

a vertex v ∈ V , the instruction “Add a K-vertex u and an edge (u, v) to G” refers to

the process of adding a K8− subgraph to G, identifying the K-vertex of this subgraph

as u, and adding the edge (u, v) to E.

We prove the following property of any (2, 2)-planar drawing that includes a K8−

subgraph.

Lemma 4. Let K = (VK , EK) be a K8− subgraph of a graph G. In any (2, 2)-planar

drawing of G, the K-vertex v of K is clustered with a vertex in VK.

Proof. Let K = (VK , EK) be a K8− subgraph of a graph G with K-vertex v. Assume
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for contradiction that there exists a (2, 2)-planar drawing Γ of G in which v is not

clustered with a vertex in VK .

Suppose that the remaining seven vertices of K8− are partitioned into at least

five clusters. In this case, the contracted graph of G includes a K5 subgraph, which

contradicts our assumption that Γ is (2, 2)-planar.

Alternatively, suppose that the remaining seven vertices of K8− are partitioned

into four clusters. In this case, EK contains three 2-clusters, v, and an additional

vertex w. If v and w are not clustered with vertices outside of K, Γ contains a

(2, 2)-planar drawing of K and Theorem 12 implies that |EK | ≤ 24. This creates a

contradiction as |EK | = 26.

However, Γ is no more plausible if v or w is clustered with a vertex outside of EK .

As Γ is (2, 2)-planar by assumption, contracting the cluster regions associated with v

and w creates a subdrawing of Γ equivalent to a (2, 2)-planar drawing of K with three

2-clusters and two 1-clusters. As previously observed, such a drawing is impossible.

As the remaining seven vertices of K8− cannot be partitioned into fewer than four

clusters, our assumption that Γ is planar creates a contradiction in every case. Thus

v is clustered with a vertex in VK in any (2, 2)-planar drawing of G.

v v

Figure 4.3: A (2, 2)-planar drawing of a K8− subgraph and K-vertex v.

A (2, 2)-planar drawing of K8− is possible when the vertices of K8− are partitioned
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into four clusters as illustrated in Figure 4.3. Lemma 4 ensures that if we add a K-

vertex v to a graph G = (V,E), no (2, 2)-planar drawing of G clusters v with a

vertex in V . Noting this useful property of the K-vertex, we proceed to establish the

NP-completeness of (2, 2)-planarity.

Theorem 15. (2,2)-Planarity is NP-complete.

(2,2)-Planarity is trivially in NP, as an input graph G is certified by a (2,2)-planar

drawing.

We show that given an instance X of Planar Monotone 3-SAT, we can construct

in polynomial time a graph G, proportional to X in size, that is a YES instance of

(2,2)-Planarity if and only if X is a YES instance of Planar Monotone 3-SAT. This

suffices to prove the NP-hardness of (2,2)-Planarity.

4.2.1 Construction of G

For convenience, the figures in this section depict the construction of the graph G0

corresponding to the Planar Monotone 3-SAT instance X0 illustrated in Figure 4.4.

X0 corresponds to the boolean formula F0 = (v1 ∨ v2 ∨ v3)∧ (v1 ∨ v3 ∨ v4)∧ (v̄2 ∨ v̄3 ∨
v̄4)∧ (v̄1∨ v̄2∨ v̄4). In subsequent figures, we represent K-vertices and their associated

K8− subgraphs with solid dots and represent ordinary vertices with hollow dots.

v1 ∨ v3 ∨ v4

v1 ∨ v2 ∨ v3

v1 v2 v3 v4

v̄2 ∨ v̄3 ∨ v̄4

v̄1 ∨ v̄2 ∨ v̄4

Figure 4.4: A planar monotone representation of X0.
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Given an instance of Planar Monotone 3-SAT X corresponding to a boolean for-

mula F , we construct G as follows.

The Variable Cycle

First, add a K-vertex vi to G for each variable in F . For convenience, we use the

symbol vi to refer to both the variable in F and the corresponding vertex in G.

Connect these vertices to form a cycle in the order implied by the monotone rectilinear

representation X. Split each edge (vi, vi+1) of the cycle by inserting the K-vertex

ci,i+1. Split the edge (v1, vn) twice, adding the K-vertices c0,1 and cn,n+1. Each K-

vertex vi is now adjacent to the vertices ci−1,i and ci,i+1. Finally, duplicate the edge

(c0,1, cn,n+1) and split the duplicate edges with the special K-vertices plus and minus.

This construction, which we refer to as the variable cycle, will separate positive clause

gadgets from negative clause gadgets in drawings ofG. The variable cycle is illustrated

in Figure 4.5.

c0,1 v1 c1,2 v2 c2,3 v3 c3,4 v4 c4,5

plus

minus

Figure 4.5: The variable cycle of G0 with false literal boundaries.

The next step in the construction of G0 is to augment the variable cycle with

paths that we will refer to as false literal boundaries. Given a variable vi, we let pi be
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the number of positive clauses and ni be the number of negative clauses of F in which

vi appears. Construct the false literal boundary of each vertex vi by connecting ci−1,i

to ci,i+1 with a path of length max(pi, ni) as illustrated in Figure 4.5.

The Clause Gadget

For each clause Cj = (lj1 ∨ lj2 ∨ lj3) in F , we create a corresponding clause gadget in

G as follows. First, add the vertices lj1, lj2, lj3, and openj, and the K-vertex closedj

to G. Create an edge between every pair of vertices as illustrated in Figure 4.6a.

openj

lj2 lj3

lj1

closedj

(a) A clause gadget Cj .

lj1

lj1

openj

lj2 lj3

closedj

(b) A (2, 2)-planar drawing of the clause gad-
get Cj .

Figure 4.6: Node-link and (2, 2)-planar drawings of the clause gadget Cj.

The clause gadget resembles a K5 subgraph, which limits the ways in which it can

be represented by a (2, 2)-planar drawing. We prove the following property of any

(2, 2)-planar drawing that includes a clause gadget subgraph.

Lemma 5. Let G = (V,E) be a graph that includes a clause gadget subgraph con-

taining the vertices lj1, lj2, lj3, openj, and closedj. In any (2, 2)-planar drawing of G,

two of the four vertices lj1, lj2, lj3, and openj must be clustered together.

Proof. First, observe that in any (2, 2)-planar drawing of a clause gadget, closedj

must be clustered with a vertex in its associated K8− subgraph according to Lemma

4.

Suppose for contradiction that G admits a (2, 2)-planar drawing Γ in which none

of lj1, lj2, lj3, and openj are clustered together. In this case, the contracted graph

GC of G includes a K5 minor. As GC is planar when G is (k, p)-planar, this is a

contradiction, which suffices to establish our lemma.
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In particular, Lemma 5 disallows the possibility of any (2, 2)-planar drawing of

G in which lj1, lj2, and lj3 are all clustered with vertices outside the clause gadget.

However, we note that any partition that clusters a literal vertex with openj does

allow a (2, 2)-planar drawing, as illustrated in Figure 4.6b.

Connecting the Clause Gadgets

We connect the clause gadgets with edges according to the relative position of clause

rectangles in X. Roughly speaking, each clause gadget is connected by an edge to

the clause gadgets above and below it in X, creating a forest of clause gadgets. The

following procedure makes this construction precise.

For each clause rectangle Cj in X, perform the following procedure. Let v1, v2

and v3 denote the variable rectangles connected to Cj in X, from left to right. By lj1,

lj2, and lj3 we denote the literals of Cj corresponding to v1, v2 and v3, respectively.

If there exists a clause rectangle Ck such that Cj is nested immediately underneath

Ck in X, let u1 and u2 denote the variable rectangles connected to Ck in X on either

side of Cj, and let lk1 and lk2 denote the literals of Ck corresponding to u1 and u2,

respectively. Split the edges (lj1, lj3) and (lk1, lk2) with two K-vertices and connect

the new K-vertices with an edge.

If Cj is not nested underneath another clause rectangle in X and Cj corresponds

to a positive clause, split (lj1, lj3) with a K-vertex and connect the new vertex to plus.

If Cj is not nested underneath another clause rectangle in X and Cj corresponds to a

negative clause, split (lj1, lj3) with a K- vertex and connect the new vertex to minus.

Each clause gadget is thus connected by an edge to the clause gadgets correspond-

ing to neighboring clause rectangles in X. The newly added edges, hereafter referred

to as tree structure edges, organize the clause gadgets into two trees, rooted at plus

and minus. Figure 4.7 illustrates tree structure edges connecting the clause gadgets

of the graph G0.

4.2.2 If X Is a YES Instance of Planar Monotone 3-SAT, G

Is a YES Instance of (2,2)-Planarity

Let X be a YES instance of Planar Monotone 3-SAT, and A be an assignment function

satisfying F . We show that the graph G corresponding to X is (2, 2)-planar by

constructing a (2, 2)-planar drawing of G as follows. Replace each variable box in X
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c0,1 v1 c1,2 v2 c2,3 v3 c3,4 v4 c4,5

plus

minus

Figure 4.7: The graph G0 corresponding to X0. Tree structure edges are highlighted
in red.

with the corresponding variable vertex and draw the variable cycle. We refer to the

region bordered by the variable cycle and adjacent to the plus vertex as the positive

side of the cycle, and to the region bordered by the variable cycle and adjacent to

the minus vertex as the negative side of the cycle.

Draw the false literal boundaries on the positive and negative sides of the vari-

able cycle according to the following rule. For each variable vi, if A(vi) is true,

draw the false literal boundary on the negative side. If A(vi) is false, draw the

false literal boundary on the positive side. Figure 4.8 illustrates a drawing of the

variable cycle and false literal boundaries of G0 according to the assigment function

A0 : {v1, v2, v3, v4} → {True, False}, which satisfies F0 by assigning the variables v2

and v3 to True and the variables v1 and v4 to False.

Each clause rectangle Cj in X is a connected by three edges to the variable rectan-

gles associated with its constituent literals. Using X as a template, draw each literal

vertex lj,k at the intersection of the clause rectangle Cj and the line connecting Cj to

the variable rectangle corresponding to lj,k. Connect the literal vertices of Cj with
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positive side

negative side

c0,1 v1 c1,2 v2 c2,3 v3 c3,4 v4 c4,5

plus

minus

Figure 4.8: A drawing of the variable cycle of G0 with false literal boundaries oriented
according to A0.

edges to form a triangular face. Finally, draw the vertices closedj and openj on the

interior of the triangular face and connect them to the literal vertices.

Insert the tree structure edges, which by construction can be added to the drawing

without creating edge crossings. Finally, connect the literal vertices to their corre-

sponding variable vertices. Note that this creates a crossing on a false literal boundary

precisely when the truth value assigned to a variable by A does not match the literal.

Figure 4.9 illustrates a drawing of G0 according to this specification.

At this point, there exist edge crossings internal to clause gadgets and at false

literal boundaries only.

Clustering to Remove Crossings

Each crossing at a false literal boundary consists of an edge between two vertices

on the boundary and an edge between a literal vertex and a variable vertex. To

resolve each crossing, cluster the literal vertex with a boundary vertex as shown in

Figure 4.10. For each variable vi, the number of ordinary vertices on the false literal
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c0,1 v1 c1,2 v2 c2,3 v3 c3,4 v4 c4,5

plus

minus

Figure 4.9: A drawing of the graph G0 with crossings at false literal boundaries and
inside clause gadgets.

boundary of vi is equal to max(pi, ni), which ensures that there are enough boundary

vertices to perform this operation.

Figure 4.10: Clustering two vertices to remove a crossing at a false literal boundary.

Let Cj be a positive clause. We know that A(vi) is true for at least one variable
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vi corresponding to a literal li in Cj because A satisfies F . Thus the false literal

boundary of vi is drawn on the negative side of the variable cycle and the vertex li

remains unclustered. Likewise, every negative clause has at least one satisfied literal

and thus every negative clause gadget has at least one unclustered literal vertex. To

resolve the necessary crossing in each clause gadget, cluster an unclustered literal

vertex with openj and draw the clause gadget according to Figure 4.6b.

The resulting drawing of G is (2, 2)-planar, and thus G is a YES instance of

(2,2)-Planarity. A (2, 2)-planar drawing of G0 is illustrated in Figure 4.11.

c0,1 v1 c1,2 v2 c2,3 v3 c3,4 v4 c4,5

plus

minus

Figure 4.11: A (2, 2)-planar drawing of the graph G0.

The result of this process is a (2,2)-planar drawing of G, and G is thus a YES

instance of (2,2)-Planarity.
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4.2.3 If G Is a YES Instance of (2,2)-Planarity, X is a YES

Instance of Planar Monotone 3-SAT

Suppose G is a YES instance of (2,2)-Planarity corresponding to an instance X of

Planar Monotone 3-SAT. Let Γ be a (2,2)-planar drawing of G. To prove that X is

a YES instance, we first establish the following lemmas.

Lemma 6. Let G be a graph containing C, a cycle of K-vertices, and two vertices v1

and v2 connected by an edge. In any (2, 2)-planar drawing of G, v1 and v2 are drawn

on the same side of C.

Proof. Let Γ be a (2, 2)-planar drawing of G. By Lemma 4, every K-vertex in Γ is

clustered within its K8− subgraph, and thus any (2, 2)-planar drawing of C is a closed

loop of 2-clusters. If v1 and v2 are drawn on opposite sides of C, the edge (v1, v2)

creates a crossing because neither v1 nor v2 can be clustered with any vertex in C.

Lemma 6 implies that the variable cycle remains intact in Γ. This enables us to

prove that the positive and negative clause gadgets are separated in any (2, 2)-planar

drawing of G.

Lemma 7. Let Γ be a (2, 2)-planar drawing of G, a graph created by our procedure

according to an instance X of Planar Monotone 3-SAT. Then the positive and the

negative clause gadgets are drawn on opposite sides of the variable cycle in Γ.

Proof. Because every positive clause gadget and every negative clause gadget needs

access to the variable vertices, none can be drawn on the face adjacent to both plus

and minus. Because the positive clause gadgets are connected by the tree structure,

by Lemma 6, every positive gadget appears on the side of the variable cycle adjacent

to plus. Similarly, every negative clause gadget appears on the side of the variable

cycle adjacent to minus.

Lemma 7 means that we may sensibly refer to the sides of the variable cycle

with the positive and negative clause gadgets as the positive side and negative side,

respectively. As a consequence of Lemma 6, each false literal boundary is drawn

either on the positive or on the negative side of the cycle as well.

We construct an assignment function A of variables from Γ as follows. If the false

literal boundary for vi is drawn on the negative side of the variable cycle in Γ, we set
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A(vi) = True. If the false literal boundary for vi is drawn on the positive side of the

variable cycle in Γ, we set A(vi) = False. The following lemma proves that A is a

satisfying assignment.

Lemma 8. Let Γ be a (2, 2)-planar drawing of G, a graph created by our procedure

according to an instance X of Planar Monotone 3-SAT. At least one literal vertex of

each positive (negative) clause gadget is connected in Γ to a variable vertex for which

A(vi) = True (A(vi) = False).

Proof. Without loss of generality, consider the case of a positive clause gadget Cj.

Assume for contradiction that every literal vertex of Cj is connected in Γ to a variable

v with A(v) = False. Letting the literal vertices lj1, lj2, and lj3 be connected to v1,

v2, and v3, this means that the false literal boundaries of v1, v2, and v3 are on the

positive side of the variable cycle with the clause gadget Cj. To prove the lemma,

we prove that any placement of the vertex closedj of the clause gadget Cj creates an

edge crossing in Γ, a contradiction.

Because closedj is a K-vertex, it cannot be clustered with a vertex on a false literal

boundary. Accordingly, we say that closedj is placed inside the false literal boundary

of vi if it is drawn in the region between the false literal boundary and vi. Otherwise,

we say that closedj is placed outside the false literal boundary. The following cases

are illustrated in Figure 4.12.

Case 1. Suppose closedj is placed on the positive side of the variable cycle outside

the false literal boundaries of v1, v2, and v3. Thus, for the edges (lj1, v1), (lj2, v2),

and (lj3, v3) to be drawn, each literal vertex must be 2-clustered with a vertex on

one of the three false literal boundaries. However, this arrangement means that the

clause gadget cannot be (2,2)-planar drawn, by Lemma 5.

Case 2. Suppose closedj is drawn on the positive side of the variable cycle

inside the false literal boundary of exactly one constituent variable. Without loss of

generality, suppose closedj is drawn inside the false literal boundary of v1. In this

case, the path (closedj, lj2, v2) intersects the false literal boundaries associated with

v1 and v2. Because closedj and v2 are K-vertices, only lj2 can be clustered with a

false literal boundary vertex and thus this placement creates at least one necessary

crossing.

Case 3. Suppose closedj is drawn on the positive side of the variable cycle

inside the false literal boundary of exactly two constituent variables. Without loss of
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(a) Case 1: closedj is drawn outside each
false literal boundary.

(b) Case 2: closedj is drawn inside one
false literal boundary.

(c) Case 3: closedj is drawn inside two
false literal boundaries.

(d) Case 4: closedj is drawn inside three
false literal boundaries.

Figure 4.12: Possible placements of the clause vertex closedj relative to three clause
boundaries.

generality, suppose closedj is drawn inside the false literal boundaries of v1 and v2.

closedj is drawn outside the false literal boundary of v3, so the path (closedj, lj3, v3)

crosses the false literal boundaries of v1, v2, and v3. Because the only variable in the

path that can be 2-clustered is lj3, there is at least one necessary crossing.

Case 4. Suppose closedj is drawn on the positive side of the variable cycle inside

the false literal boundary of all three of its constituent variables. In this case, the

path (closedj, lj1, v1) intersects the false literal boundaries of v2 and v3. Because the

only variable in the path that can be 2-clustered is lj1, there is at least one necessary

crossing.

Thus if every literal vertex of Cj is connected in Γ to a variable v with A(v) =

False, a necessary crossing is created in Γ regardless of the position of the a vertex

closedj. This creates a contradiction, which suffices to show that at least one of the

literal vertices of Cj must match the assignment of its associated variable vertex.

By Lemma 8, at least one literal vertex li of each clause gadget Cj in Γ is connected
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to a variable vi with A(vi) = li. Thus A is a satisfying assignment for F , and X is a

YES instance of Planar Monotone 3-SAT.

Together, sections 4.2.1 and 4.2.2 establish Theorem 15.

4.3 Conclusion

In this chapter, we proved that the question of (k, 1)-planarity can be easily decided

when k ≤ 3 or a clustering is fixed. However, we also demonstrated that deciding

(4, 1)-planarity and (2, 2)-planarity is NP-complete. For larger values of k and p,

the hardness of deciding (k, p)-planarity remains unknown. We conjecture that the

(k, p)-planarity decision problem is NP-complete in these cases.
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Chapter 5

Intracluster Representations

As demonstrated in Chapters 2 and 3, (k, p)-planar drawings allow large classes of

nonplanar graphs to be represented in the plane without edge crossings. However, the

choice to represent a graph with a (k, p)-planar drawing has necessary costs. First, a

(k, p)-planar drawing allows the edges incident to each particular vertex to be divided

among up to p ports, making it less apparent that the incident edges are adjacent to

each other. Second, a (k, p)-planar drawing omits intracluster edges entirely. We can

address these problems either by constructing our (k, p)-planar graphs in accordance

with external stipulations (such as the requirement that all clusters contain complete

subgraphs) or by adding additional notation to the (k, p)-planar drawing. In this

chapter, we pursue the latter approach.

This chapter considers strategies of intracluster representation, which address the

problems of port-divided incident edges and intracluster structure by creating rep-

resentations inside each cluster region. For example, an intracluster representation

might identify ports of the same vertex by drawing arcs between them or represent

intracluster structure with an intersection representation. In general, intracluster

representations strike a balance between simplicity and accuracy: by including more

information inside each cluster region, we elucidate the structure of the graph but

make our drawing more visually complex.

Section 5.1 considers (2, p)-planar drawings with marked crossings, a simple in-

tracluster representation scheme that allows the (2, p)-planar graphs to be drawn

on the plane without losing any information. We then consider (k, 2)-planar draw-

ings with intracluster circle representations, (k, p)-planar drawings with intracluster

polygon-circle representations, and (k, 4)-planar drawings with intracluster adjacency
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matrices (also called k-NodeTrix drawings) in Sections 5.2-5.4. Finally, we consider

flexible and permissive representations in Section 5.5.

5.1 (2, p)-Planar Drawings with Marked Crossings

In a (2, p)-planar drawing, each cluster contains at most two vertices which may or

may not be connected by an intracluster edge. We can communicate the presence or

absence of this edge with a binary indicator regardless of the number of ports on the

perimeter of the cluster region.

A (2, p)-planar drawing with marked crossings is a (2, p)-planar drawing in which

every cluster of two adjacent vertices is labeled with an ‘X’. (Alternatively, in a (2, 2)-

planar drawing, the adjacency of two clustered vertices can be represented by drawing

an internal edge between each pair of ports.) Clusters containing non-adjacent vertices

are left unlabeled.

Figure 5.1 illustrates a (2, 2)-planar graph and a corresponding (2, 2)-planar draw-

ing with marked crossings.

(a) A nonplanar, (2, 2)-planar graph G.

X

(b) A (2, 2)-planar drawing of G with marked
crossings.

Figure 5.1: A graphG and corresponding (2, 2)-planar drawing with marked crossings.

As marked crossings can be added to every (2, p)-planar drawing, they provide a

convenient way to draw every (2, p)-planar graph on the plane without losing infor-

73



Timothy W. Randolph Intracluster Representations

mation. However, although the method of marking crossings is convenient, it does

not scale to clusters of more than two vertices. The following section considers a

method of intracluster representation that is compatible with (k, 2)-planar drawings

for all positive integers k.

5.2 (k, 2)-Planar Drawings with Intracluster Circle

Representations

As the edge density of a graph increases, traditional node-link representations be-

come more visually complex. Intersection representations, which represent vertices

as geometric objects and indicate an edge whenever two objects overlap, provide an

alternative in this case.

In a circle graph representation, each vertex is represented by a chord on a circle

and each edge is represented by an intersection of chords. Circle graphs can be

recognized in O(n2) time [27]. Although not every graph is a circle graph, the circle

graphs include many nonplanar graphs, including every complete graph.

We define a (k, 2)-circle-planar drawing as a (k, 2)-planar drawing in which the

two ports of each clustered vertex are connected by a chord within a cluster region

and each cluster region is a circle graph that accurately represents its intracluster

structure. Figure 5.2 illustrates a (4, 2)-circle-planar drawing of K6.

The stipulation that each cluster region is a circle graph ensures that a (k, 2)-

circle-planar drawing contains all the information required to recreate the original

graph. However, although all (k, 2)-circle-planar graphs are trivially (k, 2)-planar,

not all (k, 2)-planar graphs are (k, 2)-circle-planar. We will prove the specific case

that there exists a (2, 2)-planar graph that is not (2, 2)-circle-planar.

Proposition 4. There exists a (2, 2)-planar graph that is not (2, 2)-circle planar.

Proof. Figure 5.3a illustrates a graph G with a K3,3 minor. In the figure, white

vertices represent ordinary vertices and black vertices abbreviate K-vertices and asso-

ciated K8− subgraphs as described in Section 4.2. G admits the (2, 2)-planar drawing

illustrated in Figure 5.3b.

Suppose for contradiction that G admits a (2, 2)-circle-planar drawing Γ. Lemma

4, proved in Section 4.2, states that any graph that contains a K8− subgraph admits
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Figure 5.2: A (4, 2)-circle-planar drawing of the complete graph K6.

a bb

(a) A (2, 2)-planar graph G.
(b) A (2, 2)-planar drawing of G. Black ver-
tices abbreviate the (2, 2)-planar drawing of
K8− illustrated in Figure 4.3.

Figure 5.3: A (2, 2)-planar graph G that is not (2, 2)-circle planar. K-vertices and
their associated K8− subgraphs are drawn as solid black dots.

only (2, 2)-planar drawings in which the K-vertex v is clustered within its K8− sub-

graph. The proof entails that every vertex in the K8− subgraph must be clustered

with another vertex in the subgraph.

Suppose the vertices a and b are left unclustered in Γ. In this case, the con-
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tracted graph GC of G contains a K3,3 minor and is thus nonplanar. This creates a

contradiction, as GC is planar if G is (2, 2)-planar.

Alternatively, suppose that a and b are included in the same cluster in Γ. In this

case, we may assume without loss of generality that each is represented by two ports

on the boundary of a cluster region R. Because a and b are non-adjacent, their ports

in Γ must not alternate to ensure the accuracy of the intracluster circle graph. Thus

the two ports of a and the two ports of b are adjacent along the perimeter of R in Γ.

Figure 5.4: Eliminating a 2-cluster with adjacent ports.

However, a 2-cluster with adjacent ports is superfluous. To see this, note that in

a 2-cluster with adjacent ports, the edges incident to each vertex can be consolidated

and the cluster region subsequently removed as illustrated in Figure 5.4. By this

process, Γ can be transformed into a a (2, 2)-planar drawing of G in which a and b

are unclustered. This is a contradiction, and thus no (2, 2)-planar-circle drawing of

G is possible.

We note that G could instead be represented by a (2, 2)-planar drawing with

marked crossings. In general, because the requirements of (k, 2)-circle-planarity limit

the ways in which ports can be placed, the classes of (k, 2)-circle-planar graphs are

smaller than the classes of (k, 2)-planar graphs. Determining the precise relationship

between the two remains an open problem.
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5.3 (k, p)-Planar Drawings with Intracluster Polygon-

Circle Representations

A polygon-circle graph is the intersection graph of a set of polygons inscribed in a

circle, and thus may be considered a logical extension of the circle graph. For instance,

a triangle-circle graph is the intersection graph of a set of triangles inscribed in a circle.

Recognition of polygon-circle graphs is NP-complete [25].

Every cluster with p ports per vertex thus corresponds to a p-gon-circle graph in

the same way that every cluster with two ports per vertex corresponds to a circle

graph. For example, Figure 5.5 illustrates a 4-cluster with inscribed triangles and

the corresponding triangle-circle graph. Alternatively, we may view Figures 5.5a and

5.5b as triangle-circle and node-link representations of the same graph.

(a) A cluster region Ri with inscribed trian-
gles.

(b) The triangle-circle graph of Ri.

Figure 5.5: A 4-cluster and corresponding triangle-circle graph.

Polygon-circle graphs have key advantages over circle graphs. First, the class of

(n+1)-gon-circle graphs generalizes the class of n-gon-circle graphs. This is apparent

from the observation that an n-gon-circle graph can be transformed into a (n + 1)-

gon-circle graph by adding a trivially small edge to each inscribed n-gon. Every circle

graph is thus a triangle-circle graph.

Moreover, there exist polygon-circle graphs that are not circle graphs. In [6], An-

dre Bouchet notes that the wheel graph W6 with five spokes is not a circle graph.

However, as illustrated in Figure 5.6, W6 is in fact a triangle-circle graph. Further-
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more, intracluster polygon-circle graphs are not limited to (k, p)-planar graphs with

2 ports per vertex, as inscribed polygons may have an arbitrary number of vertices.

Figure 5.6: A triangle-circle representation of the wheel graph W6.

However, polygon-circle graphs have several of the same limitations as circle

graphs. Depending on how the requirements for polygon intersection constrain port

ordering on the outside of cluster regions, (k, p)-planar graphs may not be (k, p)-

polygon-circle-planar. The problem of determining which (k, p)-planar graphs are

(k, p)-polygon-circle-planar remains an open problem. In the next section, we con-

sider an intracluster representation compatible with any cluster subgraph.

5.4 (k, p)-Planar Drawings with Intracluster Adja-

cency Matrices

In addition to inscribed polygons, adjacency matrices can be drawn inside cluster re-

gions to completely represent the intracluster structure. In a (k, p)-adjacency-matrix-

planar drawing, the inside of each k-cluster contains a k × k adjacency matrix that

displays the cluster’s internal structure. Ports are placed at both ends of the row and

column of the adjacency matrix corresponding to each vertex. A (k, p)-planar draw-

ing with intracluster adjacency matrices thus requires four ports per cluster (except

when k = 2, in which case the number of ports per cluster is effectively three.) Figure

5.7 depicts K6, which is (3, 4)-adjacency-matrix planar, and a (3, 4)-adjacency-matrix

planar drawing of K6.

The idea of using adjacency matrices to represent clusters was advanced by Henry,
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(a) K6.

X X
X

XX
X X X

X
XX
X

(b) A 3-NodeTrix-planar drawing of K6.

Figure 5.7: Node-link and NodeTrix-planar representations of K6.

Fekete, and McGuffin in [18]. The authors referred to their system as NodeTrix, and

thus when Di Giacomo, Liotta, Patrigniani and Tappini [13] formalized the (k, p)-

adjacency-matrix-planar drawing, they used the term k-NodeTrix planar to refer to

a (k, p)-adjacency-matrix planar graph. For the remainder of this section, we will use

their nomenclature for convenience.

Every intracluster graph can be represented by an adjacency matrix, whereas

intersection representations such as polygon-circle representations apply to limited

classes of graphs. However, adjacency matrices convey less of the structure of the

graph as an immediate impression. Moreover, k-NodeTrix planarity requires that

cluster regions are limited to four ports per vertex.

The class of k-NodeTrix-planar graphs is still somewhat restrictive because the

ports corresponding to a particular vertex must be placed at the ends of the corre-

sponding row and column of the adjacency matrix. Although the rows and columns

can be shuffled, this restriction on port orderings means that not all (k, 4)-planar

graphs are k-NodeTrix planar. Di Giacomo et al. [13] show that the problem of test-

ing k-NodeTrix-planarity for cluster graphs can be solved in O(n3) time when k = 2

and is NP-complete for k ≥ 3. Because this result relies on the limitations on port

ordering imposed by the intracluster adjacency matrix, it does not directly imply the

NP-completeness of testing (k, 4)-planarity for cluster graphs when k ≥ 3.

If the requirements of k-NodeTrix planarity are still too stringent for a particular

application, even more flexible intracluster representations are possible. We consider

such representations in our final section.
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5.5 Permissive Intracluster Representations

We refer to any intracluster representation that does not rely on the order or number

of ports on the border of the cluster region as a permissive intracluster representation.

For example, the marked crossings considered in Section 5.1 are permissive.

Discarding the restriction that an intracluster representation must relate to the

exterior surface of its cluster region allows a huge variety of possibilities. For instance,

the structure of a cluster subgraph could be drawn using an ordinary node-link rep-

resentation, which would be particularly effective if the subgraph in question were

planar but not outerplanar. Alternatively, cluster subgraphs could be given intra-

cluster (k, p)-planar drawings, opening the door to recursive representation schemas.

The intracluster representations previously discussed, including circle-polygon graphs

and adjacency matrices, can be applied permissively. In particular, because adjacency

matrices can be used to represent any graph, permissive intracluster adjacency ma-

trices can be employed to capture the structure of any (k, p)-planar graph in full.

The obvious drawback of permissive intracluster representations is loss of read-

ability. In a permissive intracluster representation, ports on cluster boundaries are

not associated with their intracluster vertex representations except perhaps by com-

mon colors or labels, and thus the connections between intercluster and intracluster

elements may be obscured. For this reason, permissive intracluster representations

can be used most effectively when each cluster represents a distinct semantic unit.

If the fact that two clusters are connected is more important than which two ver-

tices manifest the connection, a permissive intracluster representation may be wholly

adequate.

Finally, permissive schemes for representing intracluster structure might mix and

match intracluster representations as necessary in order to be most visually effective.

Such elaborate schemes are probably best discussed on an individual basis using the

vocabulary of graphic design.

5.6 Conclusion

In this chapter, we discussed a variety of methods for reintroducing the intracluster

structure elided in a (k, p)-planar drawing. These methods ranged from the most

readable but most narrowly applicable, such as (2, p)-planar drawings with marked
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crossings, to the most broadly applicable but difficult to quickly interpret, such as

permissive intracluster representations with mixed intracluster representations.

More work remains to be done before the potential of intracluster representations is

fully understood. However, much of this work has to do with the ease of visualization

and is more practical than theoretical. We hope that the overview provided in this

chapter is sufficient to convince the reader of the practical applicability of (k, p)-planar

drawings combined with intracluster representations.
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Chapter 6

Summary and Future Directions

In this chapter, we review the results proved in previous chapters and comment on

their significance to the broader goals of this work. Additionally, we state open

problems and outline promising directions for future research.

6.1 Review of Results

We began this thesis by providing several answers to the question “Why do we need a

new representation for cluster graphs?” First, we observed the difficulty of represent-

ing small-world networks, graphs with mined substructures, and external partition

graphs with traditional node-link representations. We reviewed the related literature,

including several graph representations that addressed aspects of our problem with

varying degrees of success. Finally, we argued that (k, p)-planar drawings success-

fully meet the demands of each of our use cases and generalize existing cluster graph

representations. A formal understanding of the (k, p)-planar graphs thus improves

our ability to represent several graph types and provides insight into the existing

representations generalized by (k, p)-planar drawings.

We focused on this formal understanding for the remainder of the work, pursuing

several lines of investigation. First, we sought to understand the (k, p)-planar graphs

in relation to established graph classes. We proved that there exist small values of k

and p for which the (k, p)-planar graphs are equivalent to the planar graphs and to

the IC-Planar graphs. Our inquiry suggested a promising conclusion: as we increase

k and p, the class of (k, p)-planar graphs grows rapidly.

How rapidly does the class of (k, p)-planar graphs grow as we increase k and p?

82



Timothy W. Randolph Summary and Future Directions

One way to measure this quantity is by considering the maximum number of edges

in a (k, p)-planar graph. Euler’s edge bound indicates that for each vertex we add to

a planar graph, the maximum number of edges increases by 3. We proved Theorems

8 and 10, which tell us that when k is fixed, each additional cluster increases the

maximum number of edges by 4k2−k or kp+k2−k, depending on the value of p. We

also proved Theorem 13, which tightly bounds the number of edges in a (k, p)-planar

graph based on its number of vertices, and Theorem 12, which requires a specified

clustering but provides an even more precise bound on the number of edges in a

(k, p)-planar graph.

Next, we turned to the hardness of deciding whether or not a graph is (k, p)-planar.

Although it is possible to determine whether a cluster graph G is (k, 1)-planar in

linear time, the problem appears much harder for larger values of k and p. When the

clustering is left unspecified, we proved that it is NP-complete to decide whether or

not a graph G is (4, 1)-planar or (2, 2)-planar, and speculated that the (k, p)-planar

decision problem remains NP-complete for larger values of k and p.

Finally, we addressed the practical matter of tailoring (k, p)-planar graphs to con-

vey more information effectively with intracluster representations. We explored a

range of options, from intracluster representations that optimized for simplicity and

readability to those that sacrificed design coherence for flexibility. At one end of the

spectrum, we demonstrated examples such as intracluster polygon-circle representa-

tions and adjacency matrices, which used the same ports to represent vertices on the

interior and exterior of the cluster region. At the other extreme, we noted the freedom

inherent in leaving the interior of the cluster region unspecified. If necessary, we can

inscribe a different representation in each cluster region to create a hybrid drawing

tailored for a specific application.

6.2 Future Directions

In previous chapters, we noted several open problems that represent promising av-

enues for future work. First, the (k, p)-planar graphs can still be better related to

existing graph classes. We suspect that there exist integers k and p such that every

NIC-planar graph is (k, p)-planar. More broadly, we observed a divergence between

the classes of (k, p)-planar graphs and several established graph classes as k and p

increased. Do there exist additional values k and p for which the (k, p)-planar graphs
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are contained within or equivalent to an established class of graphs?

We have observed that Theorem 13, which bounds the number of edges in a (k, p)-

planar graph according to the number of vertices, is tight in the p = 1 case. Moreover,

the proof of Theorem 13 parallels the proof of Theorem 10 on a more detailed scale.

Accordingly, we conjecture that Theorem 13 is tight in the case where k > p > 0.

Establishing this conjecture in the affirmative would make the relationship between

the number of vertices and the maximum number of edges in a (k, p)-planar graph

precise in the k > p case.

In Chapter 4, we prove that deciding (4, 1)-planarity and deciding (2, 2)-planarity

are NP-complete problems. For larger values of k and p, the (k, p)-planarity decision

problem appears even more complex. If we are correct in our supposition, then

the (k, p)-planarity decision problem is NP-complete for large k and p. However, it

remains possible that for certain values of k and p, the class of (k, p)-planar graphs is

easily decidable. For fixed values of k and p, how hard is the (k, p)-planarity decision

problem?

Finally, each of the non-permissive intracluster representations presented in Chap-

ter 5 presents a series of natural research questions. For instance, how large is the class

of k-NodeTrix planar graphs? Is it possible to decide in polynomial time whether a

graph is (k, 2)-circle-planar? Additionally, the intracluster representations presented

in the chapter are far from the only possibilities. Further research might define new

intracluster representations or compare the merits of intracluster representations in

a practical context.
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[6] André Bouchet. “Circle graph obstructions”. In: Journal of Combinatorial The-

ory. B 60.1 (1994), pp. 107–144.

[7] Franz J Brandenburg, Walter Didimo, William S Evans, Philipp Kindermann,

Giuseppe Liotta, and Fabrizio Montecchiani. “Recognizing and drawing IC-

planar graphs”. In: Theoretical Computer Science 636 (2016), pp. 1–16.

[8] Diane J Cook and Lawrence B Holder. “Substructure discovery using mini-

mum description length and background knowledge”. In: Journal of Artificial

Intelligence Research 1 (1994), pp. 231–255.

85



Timothy W. Randolph Summary and Future Directions

[9] William Cook. The Traveling Salesman Problem. Dec. 2016. url: http://www.

math.uwaterloo.ca/tsp/problem/index.html.

[10] Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Maurizio Pa-

trignani. “Computing NodeTrix representations of clustered graphs”. In: Inter-

national Symposium on Graph Drawing and Network Visualization. Springer.

2016, pp. 107–120.

[11] Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Pietro Palladino.

“Visual analysis of one-to-many matched graphs”. In: International Symposium

on Graph Drawing. Springer. 2008, pp. 133–144.

[12] Emilio Di Giacomo, William J Lenhart, Giuseppe Liotta, Timothy W Randolph,

and Alessandra Tappini. (k,p)-Planar Graphs: A Generalization of Hybrid Pla-

narity Models. In Preparation.

[13] Emilio Di Giacomo, Giuseppe Liotta, Maurizio Patrignani, and Alessandra

Tappini. “NodeTrix planarity testing with small clusters”. In: arXiv preprint

arXiv:1708.09281 (2017).

[14] David Eppstein, Philipp Kindermann, Stephen Kobourov, Giuseppe Liotta,

Anna Lubiw, Aude Maignan, Debajyoti Mondal, Hamideh Vosoughpour, Sue

Whitesides, and Stephen Wismath. “On the planar split thickness of graphs”.

In: Algorithmica 80.3 (2018), pp. 977–994.

[15] Leonhard Euler. “Solutio problematis ad geometriam situs pertinentis”. In:

Commentarii Academiae Scientiarum Petropolitanae 8 (1741), pp. 128–140.

[16] Huahai He and Ambuj K Singh. “Efficient algorithms for mining significant

substructures in graphs with quality guarantees”. In: IEEE International Con-

ference on Data Mining. IEEE. 2007, pp. 163–172.

[17] Nathalie Henry, Anastasia Bezerianos, and Jean-Daniel Fekete. “Improving

the readability of clustered social networks using node duplication”. In: IEEE

Transactions on Visualization and Computer Graphics 14.6 (2008), pp. 1317–

1324.

[18] Nathalie Henry, Jean-Daniel Fekete, and Michael J McGuffin. “NodeTrix: A

hybrid visualization of social networks”. In: IEEE Transactions on Visualization

and Computer Graphics 13.6 (2007), pp. 1302–1309.

86



Timothy W. Randolph Summary and Future Directions

[19] John Hopcroft and Robert Tarjan. “Efficient planarity testing”. In: Journal of

the ACM 21.4 (1974), pp. 549–568.

[20] Petra Isenberg, Sheelegh Carpendale, Anastasia Bezerianos, Nathalie Henry,

and Jean-Daniel Fekete. “CoCoNutTrix: Collaborative retrofitting for informa-

tion visualization”. In: IEEE Computer Graphics and Applications 29.5 (2009),

pp. 44–57.

[21] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 0:

Introduction to Combinatorial Algorithms and Boolean Functions (Art of Com-

puter Programming). 1st ed. Addison-Wesley Professional, 2008. isbn: 0321534964,

9780321534965.

[22] Donald E Knuth and Arvind Raghunathan. “The problem of compatible rep-

resentatives”. In: SIAM Journal on Discrete Mathematics 5.3 (1992), pp. 422–

427.

[23] Vladimir P Korzhik. “Minimal non-1-planar graphs”. In: Discrete Mathematics

308.7 (2008), pp. 1319–1327.

[24] Mark E Newman. “The structure and function of complex networks”. In: SIAM

Review 45.2 (2003), pp. 167–256.

[25] Martin Pergel. “Recognition of polygon-circle graphs and graphs of interval fil-

aments is NP-complete”. In: International Workshop on Graph-Theoretic Con-

cepts in Computer Science. Springer. 2007, pp. 238–247.

[26] Satu Elisa Schaeffer. “Graph clustering”. In: Computer Science Review 1.1

(2007), pp. 27–64.

[27] Jeremy Spinrad. “Recognition of circle graphs”. In: Journal of Algorithms 16.2

(1994), pp. 264–282.

[28] Duncan J Watts and Steven H Strogatz. “Collective dynamics of “small-world”

networks”. In: Nature 393.6684 (1998), pp. 440–442.

[29] Xifeng Yan and Jiawei Han. “gspan: Graph-based substructure pattern mining”.

In: IEEE International Conference on Data Mining. IEEE. 2002, pp. 721–724.

[30] Xin Zhang. “Drawing complete multipartite graphs on the plane with restric-

tions on crossings”. In: Acta Mathematica Sinica, English Series 30.12 (2014),

pp. 2045–2053.

87



Timothy W. Randolph Summary and Future Directions

[31] Xin Zhang, Guizhen Liu, and Yong Yu. “On (p, 1)-total labelling of plane graphs

with independent crossings”. In: Filomat 26.6 (2012), pp. 1091–1100.

88


