Homework 1

COMS W3261, Summer A 2023

This homework is due Monday, 5/29/2023, at 11:59pm EST. Submit to GradeScope (course

code:

K3VKT75). If you use late days, the absolute latest we can accept a submission is the following

Friday at 11:59 PM EST.

Grading policy reminder: IXTEX is preferred, but neatly typed or handwritten solutions are
acceptable.! Feel free to use the .tex file for the homework as a template to write up your answers, or
use the template posted on the course website. Your TAs may dock points for indecipherable writing.

Proofs should be complete; that is, include enough information that a reader can clearly tell
that the argument is rigorous.

If a question is ambiguous, please state your assumptions. This way, we can give you credit for
correct work. (Even better, post on Ed so that we can resolve the ambiguity.)

KTEX resources.

Detexify is a nice tool that lets you draw a symbol and returns the KTEX codes for similar
symbols.

The tool Table Generator makes building tables in IATEX much easier.

The tool Finite State Machine Designer may be useful for drawing automata. See also this
example (PDF) (.tex) of how to make fancy edges (courtesy of Eumin Hong).

The website mathcha.io allows you to draw diagrams and convert them to IXTEX code.

To use the previous drawing tools (and for most drawing in IATEX), you’ll need to use the
package Tikz (add the command “\usepackage{tikz}” to the preamble of your .tex file to
import the package).

This tutorial is a helpful guide to positioning figures.

!The website Overleaf (essentially Google Docs for LaTeX) may make compiling and organizing your .tex files
easier. Here’s a quick tutorial.


https://detexify.kirelabs.org/classify.html
https://www.tablesgenerator.com/
http://madebyevan.com/fsm/
https://static.us.edusercontent.com/files/HZeTXimODzWeLvHIqsvjL2BG
https://static.us.edusercontent.com/files/RI3W8tQNvHMWFe9MkXV1KztA
https://www.mathcha.io/
https://www.overleaf.com/learn/latex/Positioning_of_Figures
https://www.overleaf.com/
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

Problem 1

1. (3 points.) The DFA state diagram above is defined on the alphabet ¥ = {0,1}. Write out
its formal definition (as a 5-tuple). When specifying the transition function §, you can draw
a table or simply describe the output of § for all states on all possible inputs.

We can write the DFA as a 5-tuple {Q, ¥, 0, qo, F'}, in which the state set @ = {qo, q1, 92,93, 94},
¥ ={0,1}, and F = {q1,43,q4}. (qo is already labeled, so it needs no further definition.), fi-
nally, the transition function ¢ has §(g;,0) = ¢; and 6(gi, 1) = q(i41) (mod 5) fori € {0,1,2,3,4}.
(Other ways of writing this out are fine.)

2. (3 points.) Describe the language recognized by the DFA in one or two sentences, then explain
why the DFA accepts a string if and only if it matches your description. |[Hint: Test some
strings and look for a pattern; never forget the empty string e

This DFA accepts all strings in which the number of 1’s is 1, 3, or 4 mod 5.

We can see this by observing that the states of the DFA form a cycle of length 5, and that
the state never changes on an 0, so the state ‘advances’ one step if and only if we read in a 1.
The state counts the number of 1’s (mod 5), and the states corresponding to 1, 3, and 4 mod
5 are accept states.

Rationale: The goal of this question is to make sure you're comfortable reading state diagrams, evaluating DFAs
on strings, and reasoning about what they do.

References: Sipser 1.1 pp. 34-37; Lightning review of DFAs from the Resource Archive section of the course
webpage.



Problem 2.

1. (4 points.) Consider the DFA drawn below. What is the language recognized by this DFA
(over what alphabet)? Describe your reasoning.

The DFA below accepts strings on the alphabet {a, b, ¢} in which b’s never precede a’s and ¢’s
never precede a’s or b’s.

We can see this by observing that, as long as we stay in the set {q1, ¢2,¢3}, we are guaranteed
to accept. These states correspond to having read only a’s, having read some number of a’s,
followed by at least one b, and having read some number of a’s and b’s, followed by at least
one ¢, respectively. We reject only if we take a transition to g4, which occurs if we see an a
after a b or an a or a b after a c.

2. (4 points.) The DFA drawn below recognizes all strings over the alphabet {1,2,3} that end
inalora3and don’t contain 1’s and 3’s adjacent to each other (that is, the substrings 13
and 31 are forbidden). Draw a DFA state diagram that recognizes the same language (that
is, accepts exactly the same set of strings over {1,2,3}) but which has at most four states
in total.

Explain in words why your DFA recognizes the same language as the pictured DFA.



Our new DFA (pictured below) removes g, making g2 the new start state, and ‘merges’ the
states g4 and gs.
To see why the function of this new DFA is identical, first observe that in the original DFA,

q4 and ¢5 are both inescapable reject states. Any computation that reaches either state is
guaranteed to reject, and merging them does not change this.

Second, compare the behavior of the old and new DFAs at the beginning of computation. On
€, both DFAs reject. On an initial 1, both DFAs proceed to ¢1; on a 2, to ¢2, and on a 3, to
q3. Since it is not possible to return to qg, the execution thereafter must be identical.

Rationale: More practice reading state diagrams and evaluating DFAs on strings; also, practice designing DFAs
to perform a task and simplifying them.

References: Sipser 1.1 pp. 34-37 (DFAs); Sipser 1.1 pp. 41-43 (designing DFAs); Lightning reviews of DFAs and
designing DFAs from the Resource Archive section of the course webpage.



Problem 3

1. (4 points). In binary, the natural numbers are 0,1,10, 11,100,101, ..., etc. Draw a state
diagram for an NFA on the alphabet ¥ = {0,1} that recognizes the language of binary
natural numbers divisible by 4. (For instance, your machine should accept 100, but reject 11
and 101. Reject strings with extra leading zeroes, like 0100.)

Explain in words why your NFA recognizes the language specified.

Our NFA state diagram is pictured below. The key observation here is that all binary numbers
divisible by 4 either (1) begin with a 1, and end with an 00, or (2) are 0. Our NFA handles
these two cases.

First, we observe that our NFA accepts the string 0 and rejects all other strings beginning
with 0, as the branch of computation dies (these have extra leading 0’s). On the other hand,
if our string begins with a 1, then a single branch of computation proceeds to ¢;. From there,
one branch remains in the state g; as we read in characters, spinning off another branch that
proceeds to g2 whenever it encounters a 0. These side branches cause the computation to
accept if and only if the NFA reads in exactly two 0’s before halting. Thus we accept all
strings beginning with 1 and ending with 00.

2. (2 points). Over the binary alphabet {0, 1}, Let L; be the language of all strings whose length
is divisible by 3, and Ly be the language of all strings that have an even number of 0’s. The
state diagram below depicts an NFA that recognizes L1 U Ls.

Specify the elements of a 5-tuple (Q, X, d, qo, F') equivalent to the NFA state diagram below.
When specifying the transition function, feel free to specify d only for inputs that transition
to a non-empty set of states; for the others, you can assume 6 maps to (). No justification
required.

Here Q = {q0,41,92,93, 94,95}, X = {0,1}, and F = {q1,¢3}. We can summarize the transi-
tions specified by ¢ as follows (for all other inputs, § maps to 0): §(qo, €) = {q1,q3}, 6(q1,0) =
{2}, 0(q1,1) = {a1}, 6(q2,0) = {@1}, 0(q2,1) = {q2}. d(g3,a) = {qu}, 6(qs,a) = {g5}, and
d(g5,a) = {q3} for a € {0,1}.



3. (4 points). Draw the state diagram of a DFA over {0,1}, with at most 6 states, that also
recognizes L1 U Ly. Explain in words why your DFA recognizes this language. (We’ll discuss a
general procedure for converting NFAs to DFAs in Lecture 3, but this question doesn’t require
it.)

The original NFA accepts if the input has an even number of 0’s OR if the length of the input
is divisible by 3. Because we don’t have access to nondeterminism when designing a DFA, we
need to design a DFA that keeps track of both pieces of information at the same time.

In particular, we’ll design a DFA with 6 states, divided into two columns (corresponding to
“even number of 0’s” and “odd number of 0’s”) and three rows (corresponding to the residue
classes mod 3). We'll design our transition function so that we move down a row every time
we read in a character and swap columns every time we read in an 0; this will keep our DFA
consistent. Finally, we accept in any state corresponding to an even number of 0’s OR an
input length divisible by 3.




Rationale: The purpose of this question is to get experience in building, testing, and simplifying NFAs, as well
as converting NFAs to DFAs.

References: Sipser 1.2 pp. 47-53 (NFAs), also see the Lightning Review video on NFAs in the Resource Archive
section of the course webpage.



Problem 4

1. (2 points.) Recall that the (Kleene) star operation is defined as follows:
A" ={x1z... .z | ®1,20,. .., 21 € Ak > 0}

Let A and B be regular languages. Is it true that (A U B)* and A* U B* are the same
language? If so, provide a proof. If not, provide a counterexample. (Recall the order of
operations: A* U B* = (A*) U (B*).)

No, these are not the same language. For a counterexample, let A = {000} and B = {111}.
The first expression evaluates to {000, 111}*, which includes the string 111000, but the second
language, which includes only strings in {000}* or {111}*, does not.

2. (2 points.) Let A be a regular language. Is it true that A*A* and (AA)* are the same
language? If so, provide a proof. If not, provide a counterexample.

No, these are not the same language. For a counterexample, let A = {000}. A*A* contains
the string 000 = 000¢, as both 000 and € are elements of A*. However, (AA)* = {000000}*,
which does not contain the string 000.

Some practice reasoning about the regular operations.
References: Sipser p.44 (definition of Union, Concatenation, and Star).



Problem 5

1. (6 points.) Given a language A over an alphabet 3, define doub(A) as follows:
doub(A) := {wiwiwaws . .. wpwy, | Wiws ... wy € Ajwy,wa, ..., wy € X}

That is, each string in doub(A) can be obtained by beginning with some string wjws . .. w, in
A and replacing each character with two copies of itself.

Show that the class of regular languages is closed under the operation doub by explaining
how to modify an arbitrary DFA D; so that it recognizes the language doub(L(D;)). For
simplicity, you may consider just the case in which the alphabet is 3 = {0, 1}.

Let D1 = (Q,%,9,q0, F) be a DFA. To create a DFA Dy that recognizes doub(L(Dy)), we'll
split each transition with a new state: if §(g;,0) = ¢;, we’ll create a new state ¢ and replace
the old transition with d(g;,0) = ¢,. We'll also add the transition d(g},0) = g;.

Now we transition from ¢; to ¢; on an ‘00’, instead of on an ‘0’. Because we want to accept
only even-length strings, ¢/ will not be an accept state. Finally, because we want to reject if
we read in the substring ‘01’ from ¢;, we’ll add the transition §(q}, greq) for a “global” reject
state gpqq- The picture below depicts our splitting operation before and after:

We perform this splitting operation on every O-transition, and the reverse operation on every
1-transition (that is, we transition from g; to ¢, to ¢; on 1’s, and transition from ¢} to gpeq on
a 0).

It should be clear from the definition of the split that our new DFA accepts every string in
doub(L(Dy)). To see that the new construction rejects strings that are not in the language,
consider three possible cases:

e The string has odd length. In this case, our computation will always end on a newly
added state (some ¢;’), because we always alternate between old states and newly added
states. Newly added states are reject states, so we reject.

e The string has even length, but when divided into substrings of two characters, contains
an ‘01’ or a ‘10’. In this case, our splitting operation ensures we end up in gpq-

e The string has even length and divides evenly into the substrings ‘00’ and ‘11’, but does
not correspond to a string in L(D;) with characters doubled. Call the new string w, and
the string obtained by replacing each ‘00’ with an ‘0’ and each ‘11’ with a ‘1’ w’. In this



case, our new DFA, given w, effectively simulates D on w’, and ends on the same reject
state.

2. (2 points.) Given a language A over an alphabet X, define oct(A) similarly to doub(A), except
that we now replace each character with eight copies of itself.

Show that the class of regular languages is closed under the operation oct by reasoning from the
fact that the regular languages are closed under other, previously proved, regular expressions.
(That is, prove without explaining how to modify a DFA.) You may assume that doub is
regular.

Let A be a regular language. The proof follows from observing that oct(A) = doub(doub(doub(A))).
Given that doub is a regular operation, we have that doub(A), and thus doub(doub(A)), and
finally doub(doub(doub(A))) = oct(A) are all also regular languages.
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Problem 6 (1 point)

1. Do you have any leftover questions or confusions from week 1 that you’d like to see addressed
in class?

2. (Optional) Any other thoughts? Thank you!

Any answer gets credit.

Rationale: We’ll spend more time reviewing the toughest topics from each week, and we’ll repeat the activities
that are most useful. Also, feedback helps make the course better.
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