
Homework 3

COMS W3261, Summer A 2022

This homework is due Monday, 6/12/2023, at 11:59pm EST. Submit to GradeScope (course
code: K3VK75). If you use late days, the absolute latest we can accept a submission is Friday at
11:59 PM EST.

Grading policy reminder: LATEX is preferred, but neatly typed or handwritten solutions are
acceptable.1 Feel free to use the .tex file for the homework as a template to write up your answers, or
use the template posted on the course website. Your TAs may dock points for indecipherable writing.

Proofs should be complete; that is, include enough information that a reader can clearly tell
that the argument is rigorous.

If a question is ambiguous, please state your assumptions. This way, we can give you credit for
correct work. (Even better, post on Ed so that we can resolve the ambiguity.)

LATEX resources.

• Detexify is a nice tool that lets you draw a symbol and returns the LATEX codes for similar
symbols.

• The tool Table Generator makes building tables in LATEX much easier.

• The tool Finite State Machine Designer may be useful for drawing automata. See also this
example (PDF) (.tex) of how to make fancy edges (courtesy of Eumin Hong).

• The website mathcha.io allows you to draw diagrams and convert them to LATEX code.

• To use the previous drawing tools (and for most drawing in LATEX), you’ll need to use the
package Tikz (add the command “\usepackage{tikz}” to the preamble of your .tex file to
import the package).

• This tutorial is a helpful guide to positioning figures.

1The website Overleaf (essentially Google Docs for LaTeX) may make compiling and organizing your .tex files
easier. Here’s a quick tutorial.

1

https://detexify.kirelabs.org/classify.html
https://www.tablesgenerator.com/
http://madebyevan.com/fsm/
https://static.us.edusercontent.com/files/HZeTXimODzWeLvHIqsvjL2BG
https://static.us.edusercontent.com/files/RI3W8tQNvHMWFe9MkXV1KztA
https://www.mathcha.io/
https://www.overleaf.com/learn/latex/Positioning_of_Figures
https://www.overleaf.com/
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

1 Problem 1 (14 points)

1. (3 points). What is the language of the grammar G1 below? Express this language as a set,
with a sentence, or as a simple regular expression and explain your reasoning.

(Note that here we use the abbreviated or ‘rules-only’ way to write a grammar. The variables
{S,A,B,C} can be read off the lefthand side, and the terminals {0, 1, 2, 3} are the remaining
symbols.)

S → 0A | 1B | 2C
A → 1B | 2C
B → 2C

C → 3

This grammar generates a finite language that we can enumerate by trying all possible se-
quences of rules. Alternatively, we can simplify things slightly by observing that C is always
replaced with the terminal 3, and thus B is always replaced with the terminal substring 23,
to get the following grammar:

S → 0A | 123 | 23
A → 123 |23

At this point, we can try all possible sequences of rules, which gives the language

{23, 123, 023, 0123}.

2. (2 points). How does the language of G1 change if we add the rule S → SS to the grammar?

We have already seen that, if we don’t use this rule, the variable S derives the set {23, 123,
023, 0123}.

Thus any possible derivation of a terminal string using this grammar uses the rule S → SS
a certain number of times, and then each S variable is replaced with a string from the set
{23, 123, 023, 0123}.
The new rule allows us to create any positive number of concatenated S variables, which lets
us make any string in the set {23, 123, 023, 0123}+.

3. (3 points). What is the language of the grammar G2 below? Express this language as a set,
with a sentence, or as a simple regular expression and explain your reasoning.

S → AB

2

A → 01A10 | 0
B → 1B | ϵ

The first rule guarantees that strings produced by this grammar will consist of two concate-
nated substrings: one derived from the variable A, and one derived from the variable B. The
string derived from the variable A contains an equal number of 01 and 10 substrings, deter-
mined by the number of times we use the rule A → 01A10, with a single 0 in the middle. The
string derived from B can produce a substring of 1’s of any length.

Thus the language of this grammar is thus

{(01)n0(10)n1k | n, k ≥ 0},

equivalently, “the language of strings consisting of n repeated 01 substrings, for some n ≥ 0,
then a single 0, then n repeated 10 substrings, and finally k repeated 1 substrings for some
k ≥ 0”.

4. (3 points). Design a grammar for the language

D = {1n02m1m02n | m,n ≥ 2}

and explain why your grammar produces D. (This language includes such strings as 110000110000.)
You may use the brief representation of grammars (i.e., rules-only) or write out the full 4-tuple.

There are several ways to generate this language, but one is as follows:

S → 11A0000

A → 1A00 | 0000B11

B → 00B1 | ϵ

Note that we’ve used the rules S → 11A0000 and A → 0000B11 to ensure m,n ≥ 2.

5. (3 points). Design a grammar for the language represented by the regular expression

R1 = 1+ ∪ 0+ ∪ 1∗01∗

and explain why your grammar produces the same language. You may use the brief represen-
tation of grammars (i.e., rules-only) or write-out the full 4-tuple.

Here we can explicitly use our rules for building a CFG that matches a given regular expression,
or just read R1 carefully to understand its meaning and build accordingly.

R1 describes a language in which strings match at least one of three sub-regular expressions:
1+, 0+, or 1∗01∗. Accordingly, we’ll start by transforming our start variable into one of three
variables and work from there.

S → A | B | C

3

A → 1A | 1
B → 0B | 0
C → D0D

D → 1D | ϵ

If we want, we can get clever and use even fewer rules. (For example, remove A and replace
S → A with S → 1D.)

Rationale: The goal of this question is to practice interpreting and building context-free grammars.
References: Sipser p. 102 and Lightning Review 5 (CFG definition and deriving strings), Sipser p.105 (figuring

out the language of a CFG), and Sipser p.106-107 (tips for building CFGs).

4

2 Problem 2 (12 points)

1. (6 points.) Prove that the language

A = {aibjck | i+ j ≥ k}

over the alphabet Σ = {a, b, c} is nonregular using the pumping lemma.
First, assume for contradiction that A is regular. By the pumping lemma, under our assump-
tion of regularity there exists some number p such that every string s ∈ A with s ≥ p can be
divided into 3 substrings x, y, and z such that (1) xyiz is in the language for all i ≥ 0, (2)
|y| > 0, and (3) |xy| ≤ p.
We’ll choose the contradiction string w = apbpc2p. Since |w| > p and w ∈ A, the pumping
lemma tells us that w can be written as xyz where x, y, and z are substrings satisfying the
pumping conditions.
To divide w in a way that satisfies (2) and (3), we must have xy consisting of only a symbols,
y consisting of one or more a symbols. Thus xy0z = xz = ap−|y|bpc2p must be in the language
to satisfy (1). However, as |y| > 0 by (2), the number of a’s and b’s in ap−|y|bpc2p is less than
the number of c’s. Thus there is no way to partition this string to satisfy (1), (2), and (3)
simultaneously.
Thus our assumption leads to a contradiction, and we can conclude that A does not satisfy
the pumping lemma and is nonregular.

2. (6 points.) Prove that the language

B = {aibjck | i < j OR i > k; also i, j, k ≥ 1}

over the alphabet Σ = {a, b, c} is nonregular using the pumping lemma.
First, assume for contradiction that B is regular. By the pumping lemma, under our assump-
tion of regularity there exists some number p such that every string s ∈ B with s ≥ p can be
divided into 3 substrings x, y, and z such that (1) xyiz is in the language for all i ≥ 0, (2)
|y| > 0, and (3) |xy| ≤ p.
We’ll choose the contradiction string w = apbp+1c2p. Since |w| > p and w ∈ B, the pumping
lemma tells us that w can be written as xyz where x, y, and z are substrings satisfying the
pumping conditions.
To divide w in a way that satisfies (2) and (3), we must have xy consisting of only a symbols
and y consisting of one or more a symbols. Thus xy2z = xz = ap+|y|bp+1c2p must be in the
language by (1). However, as p > |y| > 0 by (2) and (3), in ap+|y|bp+1c2p the number of a’s is
equal to or greater than the number of b’s and less than or equal to the number of c’s. Thus
there is no way to partition this string to satisfy (1), (2), and (3) simultaneously.
Thus our assumption leads to a contradiction, and we can conclude that B does not satisfy
the pumping lemma and is nonregular.

Rationale: The goal of this question is to practice using the pumping lemma to show that languages are nonregular.
References: Sipser p. 78-79 and Lightning Review 4 (the pumping lemma), Sipser p.80-82 and Lightning Review

5

5 (using the pumping lemma).

6

3 Problem 3 (6 points)

1. (5 points.) We’ve proved that the regular languages are closed under regular operations such as
complement, union, concatenation and star: if we apply these operations to regular languages,
we get a regular language. However, we have not proved that the nonregular languages are
closed under the regular operations.

Suppose A and B are nonregular languages. Is their union A∪B guaranteed to be nonregular?
If so, provide a proof. If not, provide a counterexample.

No, this is not guaranteed. For example, consider the languages A = {0n1m | n ≥ m} and
B = {0n1m | n ≤ m}. Neither of these languages is regular, as we can show with pumping
lemma proofs very similar to those we’ve used in class and previously in this homework.
However, the union A ∪ B is the language {0n1m | n,m ≥ 0}, which is equivalent to the
regular expression 0∗1∗.

2. (1 point.) Give an example of a language C such that C ∩ A is regular for any language A,
whether A is regular or not. (You should be able to do this for an arbitrary alphabet Σ, but
feel free to assume Σ = {0, 1} for this question if you would like.)

The empty set ∅ is the easiest example, but this is true for any finite language C: as long as
C is finite, A ∩ C is finite, and all finite languages are regular. (To see this, observe that any
finite language is a finite union of languages containing a single string.)

Rationale: The goal of this question is to practice reasoning about closure properties and (non)regularity.
References: Languages that we’ve previously proved to be nonregular (refer to previous questions in this HW, or

the Lecture 4 notes) which can serve as examples. Recall that a regular language is any language recognized by some
DFA; or equivalently, recognized by some NFA; or equivalently, expressed by some regular expression. A nonregular
language is any language that can’t be recognized/expressed in this way.

7

4 Problem 4 (8 points)

1. (4 points.) Consider the following “proof” of nonregularity, which contains a logical error:

(a) Consider the language A = {x ∈ {0, 1}∗ | |x| is divisible by 3. }. We’ll assume for
contradiction that A is regular.

(b) By the pumping lemma, under our assumption there exists some number p such that
every string s ∈ A with s ≥ p can be divided into 3 substrings x, y, and z such that (1)
xyiz is in the language for all i ≥ 0, (2) |y| > 0 and (3) |xy| ≤ p.

(c) We’ll choose the contradiction string 03p, which has length 3p > p and is in the language.
We’ll show that it fails the conditions of the pumping lemma.

(d) To satisfy condition (2), it must be true that y is a string containing at least one 0.

(e) Consider y = 00. In this case, the string xy2z has length 3p+ 2.

(f) Since |xyz| = 3p is divisible by 3, |xy2z| = 3p+ 2 is not divisible by 3 and thus xy2z is
not in the language.

(g) Thus the string 03p cannot be pumped, which is a contradiction. Therefore A is nonreg-
ular.

This can’t be right: A is a regular language, as we’ve already seen. In what step does the
error occur? Why is this proof invalid?

The error here occurs in step (e), when we consider only one possibility for y: y = 00. To
show that 03p fails the conditions of the pumping lemma, we need to prove that there is no
way to divide 03p into x, y, z that can satisfy (1), (2), and (3).

In this case, 03p can indeed be pumped: for example, choose x = ϵ, y = 000, z = 03p−3.

2. (4 points.) The following proof also contains a logical error. In what step does it occur, and
why is this proof invalid?

(a) Consider the language B = {aibjck | i ≤ j OR j < k OR k < i}. We’ll assume for
contradiction that B is regular.

(b) By the pumping lemma, under our assumption there exists some number p such that
every string s ∈ A with s ≥ p can be divided into 3 substrings x, y, and z such that (1)
xyiz is in the language for all i ≥ 0, (2) |y| > 0 and (3) |xy| ≤ p.

(c) We’ll choose the contradiction string apbpcp. which has length 3p > p. Moreover, apbpcp

is in the language because the number of a’s is less than or equal to the number of b’s.
We’ll show that it fails the conditions of the pumping lemma.

(d) To satisfy conditions (2) and (3), it must be true that y is a string containing at least
one a, and only a’s.

(e) Note that apbpcp is in the language because it satisfies the first of the three OR’ed
conditions in the language definition: if we set i, j, k = p, it is true that i ≤ j but not
true that j < k or k < i.

8

(f) Now consider the string xy2z = ap+|y|bpcp. Since it is no longer true that i ≤ j, this
string is not in the language.

(g) Thus the string apbpcp cannot be pumped, which is a contradiction. Therefore B is
nonregular.

The error here comes in step (f), where the analysis of xy2z = ap+|y|bpcp is incomplete. If
i = p+ |y|, and j, k = p, it is now true that k < i.

As it turns out, this language is regular and the proof can’t be salvaged. To see this, consider
the set of strings of the form aibjck that aren’t in the language: for such a string, we must
have i > j > k ≥ i, which is impossible. In fact, B = a∗b∗c∗.

Rationale: The goal of this question is to practice the pumping lemma from a different angle: common issues
that arise when working through PL proofs.

References: Sipser p. 78-79 and Lightning Review 4 (the pumping lemma), Sipser p.80-82 and Lightning Review
5 (using the pumping lemma).

9

5 Problem 5 (1 bonus point)

The Myhill-Nerode theorem says that a language L is a regular language if and only if L has a finite
number of equivalence classes (i.e., L would not be a regular language if it had an infinite number
of equivalence classes). Because it gives us an ‘if and only if’ condition, it’s more powerful than the
pumping lemma.

Consider the language L, defined over the alphabet Σ = {0, 1}:

E = {w | w starts or ends with the substring 0}.

Is E regular or nonregular? Prove your claim using the Myhill-Nerode theorem. (Hint: You
should define all the equivalence classes for E in terms of distinguishing extensions, or prove that
there are an infinite number of equivalence classes under this relation.)

Yes, E is regular. Consider the classes

1. w begins in 0,

2. w begins with 1 and ends in 0,

3. w begins with 1 and ends in 1,

4. w = ϵ.

These three classes partition {0, 1}∗. Moreover, we claim that pairs of strings in each class are
indistinguishable from each other, so the three classes are in fact equivalence classes.

For any two strings x and y in the first equivalence class, any extension z creates a string in
the language. For two strings in the second equivalence class, an extension z creates a string in the
language if z ends in 0 OR if z is the empty string. For two strings in the third equivalence class,
an extension z creates a string in the language if z ends in 0 (and not if z is the empty string).
Finally, the fourth equivalence class contains only the empty string, so no pair of strings can be
distinguished.

Because this is a finite number of equivalence classes, by the Myhill-Nerode theorem, L must be
regular.

Rationale: Optional, just for fun. The bonus point will add 1 to your total score on this HW, which is out of 40.
Resources: Wiki on the Myhill-Nerode theorem and equivalence classes.

10

https://en.wikipedia.org/wiki/Myhill%E2%80%93Nerode_theorem
https://en.wikipedia.org/wiki/Equivalence_class
https://en.wikipedia.org/wiki/Myhill%E2%80%93Nerode_theorem
https://en.wikipedia.org/wiki/Equivalence_class

	Problem 1 (14 points)
	Problem 2 (12 points)
	Problem 3 (6 points)
	Problem 4 (8 points)
	Problem 5 (1 bonus point)

