
Homework 5

COMS W3261, Summer A 2023

This homework is due Monday, 6/26/2023, at 11:59pm EST. Submit to GradeScope (course
code: K3VK75). If you use late days, the absolute latest we can accept a submission is Friday at
11:59 PM EST.

Grading policy reminder: LATEX is preferred, but neatly typed or handwritten solutions are
acceptable.1 Feel free to use the .tex file for the homework as a template to write up your answers, or
use the template posted on the course website. Your TAs may dock points for indecipherable writing.

Proofs should be complete; that is, include enough information that a reader can clearly tell
that the argument is rigorous.

If a question is ambiguous, please state your assumptions. This way, we can give you credit for
correct work. (Even better, post on Ed so that we can resolve the ambiguity.)

LATEX resources.

• Detexify is a nice tool that lets you draw a symbol and returns the LATEX codes for similar
symbols.

• The tool Table Generator makes building tables in LATEX much easier.

• The tool Finite State Machine Designer may be useful for drawing automata. See also this
example (PDF) (.tex) of how to make fancy edges (courtesy of Eumin Hong).

• The website mathcha.io allows you to draw diagrams and convert them to LATEX code.

• To use the previous drawing tools (and for most drawing in LATEX), you’ll need to use the
package Tikz (add the command “\usepackage{tikz}” to the preamble of your .tex file to
import the package).

• This tutorial is a helpful guide to positioning figures.

1The website Overleaf (essentially Google Docs for LaTeX) may make compiling and organizing your .tex files
easier. Here’s a quick tutorial.

1

https://detexify.kirelabs.org/classify.html
https://www.tablesgenerator.com/
http://madebyevan.com/fsm/
https://static.us.edusercontent.com/files/HZeTXimODzWeLvHIqsvjL2BG
https://static.us.edusercontent.com/files/RI3W8tQNvHMWFe9MkXV1KztA
https://www.mathcha.io/
https://www.overleaf.com/learn/latex/Positioning_of_Figures
https://www.overleaf.com/
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

Problem 1 (15 points)

1. (3 points) Consider the language

STARDFA = {⟨D1⟩ | D1 is a DFA and L(D1) = {a}∗ for some a ∈ Σ, D1’s alphabet}.

(For example, if D is a DFA over the alphabet {0, 1}, then ⟨D⟩ ∈ STARDFA if L(D) = {0}∗
or L(D) = {1}∗.) Show that STARDFA is decidable by giving a high-level description of a
Turing Machine that decides STARDFA.

Our Turing Machine works as follows:

• Check to make sure the input encodes a DFA D1. (You can assume this step; including
it is optional.)

• Let Σ be the alphabet of D1, which is finite by definition. For each character a ∈ Σ, we
can build a DFA D2 that recognizes the language {a}∗ and write down its encoding on
the tape.

• Use a hard-coded copy of our decider for EQDFA from class to test if L(D1) = L(D2),
and accept if and only if our decider accepts.

2. (4 points) Consider the language

STAR2DFA = {⟨D1⟩ | D1 is a DFA and L(D1) = F ∗ for some finite language F ⊂ Σ∗}.

(For example, if D is a DFA over the alphabet {0, 1}, then ⟨D⟩ ∈ STAR2DFA if L(D) =
{0, 11, 010}∗ or the star of some other finite language.) Show that STAR2DFA is recognizable
by giving a high-level description of a Turing Machine that recognizes STAR2DFA.

[Hint: be careful when enumerating the finite languages over Σ.]

Our Turing Machine works as follows:

• Check to make sure the input encodes a DFA D1. (You can assume this step; including
it is optional.)

• Let Σ be the alphabet of D1, which is finite by definition. Let S1, S2, S3, . . . be an infinite
sequence that enumerates every finite language over Σ.
(We can construct such a language by enumerating all subsets of Σ∗ containing strings
of length at most 0, then all subsets of Σ∗ containing strings of length at most 1, then all
subsets of Σ∗ containing strings of length at most 2, etc. Note that certain approaches
for enumerating this infinite set don’t work: for example, we can’t enumerate all subsets
of at most 0 elements, then 1 elements, then 2 elements, etc., as there are an infinite
number of subsets of Σ∗ with at most 1 element.)

• For i = 0, 1, 2, ..., build a DFA D2 that recognizes the language S∗
i and write down its

encoding on the tape. Then, use a hard-coded copy of our decider for EQDFA from class
to test if L(D1) = L(D2), and accept if and only if our decider accepts.

2

3. (8 points) Consider the language

Anoloop := {⟨D⟩ | D is a DFA that never visits any state twice on an accepting string.}

In other words, the computational path taken by D on an accepting string never contains a
loop.

Show that Anoloop is decidable by describing a Turing machine that decides the language.
Explain why your TM accepts every string in Anoloop and halts and rejects on every string
not in Anoloop.

There are a couple of ways we can decide this language, including:

“M = on input w:

• Check to make sure the input encodes a DFA D. (You can assume this step; including
it is optional.)

• Let Q denote the state set of D and let Σ denote the alphabet of D. Simulate D on every
string in Σ∗ of length less than 2|Q|. Accept if D accepts any string w after making a
loop; reject if D never accepts a string after making a loop.”

If the input encodes a DFA that never loops, then we accept: it is impossible to find an
accepting string that makes a loop. If our input does not encode a DFA, we reject. It remains
to show that if the input encodes a DFA that does loop on some input string w, we discover
a loop and reject.

Let w be the shortest accepting string on which D completes a loop. If |w| < 2|Q|, we discover
this string and reject. Alternatively, suppose |w| ≥ 2|Q|. In this case, the computation on w
must visit some state at least three times, as we visit |w| + 1 > 2|Q| states before accepting
w. Thus we can remove some characters from w to eliminate a loop from the accepting
computation and get a shorter accepting string w′ on which D still completes a loop. However,
this contradicts our assumption that w is the shortest string on which D completes a loop.

Thus if D loops on any accepting string, it must loop on an accepting string of length less
than 2|Q|, in which case our TM rejects.

Alternatively, we might perform a breadth-first search of depth |Q| from the start state to
locate any loop in our DFA, then search for accepting states reachable from the end of a loop.

Rationale: The goal of this problem is to practice programming Turing Machines to decide and recognize lan-
guages, especially tricky ones that require simulating other automata.

References: See Sipser 193-197 for many examples of decidable languages, or review the notes and solutions to
problems from Lectures 8 and 9.

3

Problem 2 (6 points)

The transition function of an ordinary TM, δ : Q×Γ → Q×Γ×{L,R}, changes the internal state,
writes a new character, and moves either left or right based on the current internal state and the
character on the current tape square.

An Undo-TM is a variant TM with the following special power: for any (state, character) pair
(q, a), we can specify the transition δ(q, a) = UNDO. On an ‘UNDO’ operation, the TM undoes
the most recently overwritten character. For example, if the TM just changed a 0 to a 1, then a 2
to a 3, the first UNDO would change the 3 back to a 2, and a subsequent UNDO would change the
1 back to an 0. An UNDO operation does not change the position of the tape head. If the tape has
already reverted to its initial state (that is, a tape containing only the input), the UNDO operation
does nothing.

Any TM trivially has an equivalent Undo-TM (an identical machine that chooses never to use the
UNDO operation). Show that Undo-TMs are equivalent to TMs by showing that every Undo-TM
has an equivalent TM.

Given an arbitrary Undo-TM U , we can build an equivalent TM T as follows:

• When U makes a normal transition, T imitates it by placing a delimiter (for example, a #)
at the end of its tape, copying the entire tape to the other side of the delimiter, and finally
executing the transition, modifying the copied tape.

• When U makes an UNDO operation, T erases the current tape up to the previous delimiter,
and moves to the current tape position on the previous tape. (If there is no previous tape,
the UNDO operation is ignored.)

Rationale: The goal of this question is to practice showing that Turing Machine variants are equal to Turing
Machines in power.

References: See Sipser pp. 176-181, which shows how to reduce multitape and nondeterministic TMs to regular
TMs. See also the review video Example 6: Reducing Variant TMs to TMs.

4

Problem 3 (6 points)

Consider the language

P = {⟨M,D⟩ | M is a TM, D is a DFA, and there exists some string w that M,D both accept. }

Prove that P is undecidable by reducing from ATM = {⟨M,w⟩ | M is a TM and M accepts w.}.
[Hint: Start with the assumption that P is decidable, and find a contradiction.]

We know that ATM is undecidable. We’ll show that P is undecidable by showing that if we
could decide P , we could decide ATM , which is a contradiction.

Assume for contradiction that some TM H decides P . In that case, we can use H to build the
following TM, which decides ATM :

“T = On input ⟨M,w⟩ :

1. Construct a DFA D that accepts only the string w.

2. Simulate H(⟨M,D⟩), and accept if and only if the simulation accepts.”

We observe that H(⟨M,D⟩) accepts if and only if M and D both accept some string. Since D
only accepts w, H(⟨M,D⟩) accepts if and only if M accepts w.

Thus a decider for P would allow us to decide ATM , which is a contradiction. We conclude that
P is undecidable.

Rationale: The goal of this question is to practice showing undecidability by reducing one problem to another
problem.

References: See Sipser 215-220, in which several languages are shown to be undecidable by reducing from the
halting problem.

5

Problem 4 (5 points)

For the following questions, an answer of a sentence or two is fine.

1. The final exam will be available on Gradescope from 12:01am EST on Thursday, June 29 until
11:59pm EST on Friday, June 30. (We can also arrange for some students to take the final on
Saturday, July 1. Please contact the course staff if you’re interested in this option). You can
take the final during any contiguous 12 hours during this time period (your time starts when
you download the file, and ends when you upload it again.) The test is not designed to take
the whole 12 hours.

During the final exam, you’ll be allowed to use your notes, the textbook, your past HW, and
resources linked on the course homepage, including past lecture notes, review videos, and the
course skeleton. You won’t be allowed to collaborate or use external resources on the internet.
The course staff will respond to Ed posts only to give basic clarifications about the problem
statements.

(a) Locate your graded submissions for HW1, HW2, HW3 and HW4. Locate your notes, or
download the notability notes for the previous lectures.

(b) (1 point) Looking over your past work, what are one or two things you don’t understand
well or would like to review? What’s one thing you have down pat?

(c) (2 points) Set a goal (in terms of performance, score, or something else) for the final
exam. What’s your (study) plan to achieve that goal?

2. (1 point) What action, activity, or HW problem constitutes your best work of the term?

3. (1 point) What’s something that could have gone better, or that you would do differently if
you took the class again?

Rationale: The goal of this question is to get you thinking about what you’ve learned in this course and prepare
you for the final. Good luck!

References: Homework solutions, course skeleton, and review videos on the course webpage.

6

