
Homework 5

COMS W3261, Summer A 2022

This homework is due Tuesday, 6/28/2022, at 11:59pm EST. Submit to GradeScope (course
code: 2KGDW8).

Grading policy reminder: LATEX is preferred, but neatly typed or handwritten solutions are
acceptable. I recommend using the .tex file for the homework as a template to write up your an-
swers. Your TAs may dock points for indecipherable writing.

Proofs should be complete; that is, include enough information that a reader can clearly tell
that the argument is rigorous.

If a question is ambiguous, please state your assumptions. This way, we can give you credit for
correct work. (Even better, post on Ed so that we can resolve the ambiguity.)

LATEX resources.

• The website Overleaf (essentially Google Docs for LaTeX) may make compiling and organizing
your .tex files easier. Here’s a quick tutorial.

• Detexify is a nice tool that lets you draw a symbol and returns the LATEX codes for similar
symbols.

• The tool Table Generator makes building tables in LATEX much easier.

• The tool Finite State Machine Designer may be useful for drawing automata. See also this
example (PDF) (.tex) of how to make fancy edges (courtesy of Eumin Hong).

• The website mathcha.io allows you to draw diagrams and convert them to LATEX code.

• To use the previous drawing tools (and for most drawing in LATEX), you’ll need to use the
package Tikz (add the command “\usepackage{tikz}” to the preamble of your .tex file to
import the package).

• This tutorial is a helpful guide to positioning figures.
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https://www.overleaf.com/
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://detexify.kirelabs.org/classify.html
https://www.tablesgenerator.com/
http://madebyevan.com/fsm/
https://static.us.edusercontent.com/files/HZeTXimODzWeLvHIqsvjL2BG
https://static.us.edusercontent.com/files/RI3W8tQNvHMWFe9MkXV1KztA
https://www.mathcha.io/
https://www.overleaf.com/learn/latex/Positioning_of_Figures


1 Problem 1 (9 points)

1. (3 points) Prove that the language

ACFG−fast := {⟨G,w⟩ | G is a CFG and w can be derived in G in at most |w| steps.}

is decidable by giving a high-level description of a Turing Machine that decides ACFG−fast.
As an example, the hypothetical derivation S → AA → 00A → 00B → 001 takes four steps
(uses a substitution rule four times before reaching a string of terminals) to derive the string
001, which has length 3.

Our Turing Machine works as follows:

(a) Check to make sure the input encodes a CFG and a string. (This step is implicit;
including it is optional.)

(b) By definition, the number of substitution rules in a CFG is finite. Thus our TM can
enumerate every valid sequence of substitutions of length |w|.

(c) We accept if and only if w is in our list of strings that can be derived using at most |w|
substitutions.

2. (3 points) Prove that the language

INCDFA := {⟨D1, D2⟩ | D1, D2 are DFAs and L(D1) ⊆ L(D2)}

is decidable by giving a high-level description of a Turing Machine that decides INCDFA.

Our Turing Machine works as follows:

(a) Check to make sure the input encodes two DFAs. (This step is implicit; including it is
optional.)

(b) By using previously defined procedures for creating DFAs that compute the intersection
and complement of input DFAs, our TM can build a DFA that recognizes L(D1)∩L(D2).

(c) L(D1) ⊆ L(D2) if and only if L(D1)∩L(D2) = ∅. We can use our procedure for deciding
EDFA to determine this and accept if so.

3. (3 points) Prove that the language

EQ2TM := {⟨M1,M2, w⟩ | M1,M2 are Turing Machines, w is a string and
M1,M2 either both accept or both reject on w}

is recognizable by giving a high-level description of a Turing Machine that recognizes EQ2TM .
Why doesn’t your recognizer decide the language?

Our Turing Machine works as follows:

(a) Check to make sure the input encodes two TMs. (This step is implicit; including it is
optional.)
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(b) Simulate M1 and M2 on the string w in parallel (that is, simulate one step of M1, followed
by one step of M2, etc.)

(c) If M1 and M2 both halt and accept or both halt and reject, accept. If both simulations
halt and return different answers, reject.

The recognizer works because if w is in the language, both simulations eventually halt by
definition. However, w might cause one or both of the machines to run forever without
halting, in which case our machine never halts.

Rationale: The goal of this problem is to practice programming Turing Machines to decide and recognize lan-
guages, especially tricky ones that require simulating other automata.

References: See Sipser 193-197 for many examples of decidable languages, or review the notes and solutions to
problems from Lectures 8 and 9.
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2 Problem 2 (7 points)

Recall that a configuration summarizes a Turing Machine at a particular moment in time: in
particular, a configuration is a finite string that includes (1) which internal state we’re in, (2) what
tape square the tape head is pointing at and (3) the contents of the tape (leaving out the infinite
number of blank squares to the right of any square touched by the input or the tape head.) The
subsequent behavior of a Turing Machine is completely determined by its current configuration.
Thus, if we ever enter the same configuration twice, we’re caught in an infinite loop.

I have a brilliant idea for a hypercomputer (the Time-Saving Machine, or TiM) that defeats the
halting problem! In particular, my hypercomputer is exactly the same as a Turing Machine, with
the following special rule that takes priority over normal execution: if a TiM ever enters the same
configuration twice, it immediately halts and rejects.

1. (2 points). Give a high-level description of a TiM that runs forever without halting.

Consider the TiM that ignores the input and repeatedly moves to the right, writing a 0 to
the tape at every step. As the input tape records an ever-increasing string of zeroes, we never
enter the same configuration twice so the special rule does not apply. However, we still run
forever without halting.

2. (5 points). Show that a TiM is no more powerful than a TM by proving that every TiM has
an equivalent TM. (A high-level description of a TiM simulation is fine.)

Consider an arbitrary TiM. Because TiMs are exactly the same as Turing Machines, simulating
the ‘ordinary’ behavior of the TiM with an equivalent Turing Machine is no problem. The
trick is to make sure our simulation will execute the special rule at the right time.

Given an arbitrary TiM T , our simulating TM works as follows on an arbitrary input w:

(a) Store the start configuration of the TiM to be simulated on a list. (Because a configu-
ration is a finite string, we could do this by writing it on the tape along with the other
information we need for our simulation.)

(b) Simulate one step of TiM execution on the input string.

(c) Check if the current configuration matches any previous configuration from our list. If
so, halt and reject. If not, add the current configuration to the end of the list.

(d) Repeat from step (b). If our simulation ever accepts or rejects without invoking the
special rule, accept or reject accordingly.

Rationale: The goal of this question is to practice showing that Turing Machine variants are equal to Turing
Machines in power.

References: See Sipser pp. 176-181, which shows how to reduce multitape and nondeterministic TMs to regular
TMs. See also the review video Example 6: Reducing Variant TMs to TMs.
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3 Problem 3 (6 points)

Recall the language

EQ2TM := {⟨M1,M2, w⟩ | M1,M2 are Turing Machines, w is a string and
M1,M2 either both accept or both reject on w},

which you showed is Turing-recognizable in problem 1. Show that this language is undecidable by
reducing from the halting problem. [Hint: Start with the assumption that this language is decidable,
and find a contradiction.]

We’ll show that this language is undecidable by assuming decidability and finding a contradic-
tion: namely, showing that we can decide the halting problem.

Suppose there exists some Turing Machine Q that decides EQ2TM . Let MY ES and MNO be
simple Turing Machines that always accept and always reject, respectively. We can use the following
procedure to decide

HALTTM = {⟨M,w⟩ | M is a TM and M halts on w}.

On input ⟨M,w⟩

1. Simulate our decider Q on the inputs ⟨MY ES ,M,w⟩ and ⟨MNO,M,w⟩.

2. If running M(w) would halt and accept, Q accepts the first input and rejects the second. If
M(w) halts and rejects, Q rejects the first input and accepts the second. In either of these
cases, we accept.

3. If running M(w) would never halt, Q halts and rejects both inputs, as M neither accepts nor
rejects on w. In this case, we reject.

Thus a decider for EQ2TM would allow us to decide the halting problem, which is a contradiction.
We conclude that EQ2TM is undecidable.

Rationale: The goal of this question is to practice showing undecidability by reducing one problem to another
problem.

References: See Sipser 215-220, in which several languages are shown to be undecidable by reducing from the
halting problem.
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4 Problem 4 (8 points)

For the following questions, an answer of a sentence or two is fine.

1. The final exam will be available on Gradescope from 12:01am EST on Wednesday, June 29
until 9:00pm EST on Friday, July 1. You can take the final during any contiguous 12 hours
during this time period (your time starts when you download the file, and ends when you
upload it again.) The test is not designed to take the whole 12 hours.

During the final exam, you’ll be allowed to use your notes, the textbook, your past HW, and
resources linked on the course homepage, including past lecture notes, review videos, and the
course skeleton. You won’t be allowed to collaborate or use external resources on the internet.
The course staff will respond to Ed posts only to give basic clarifications about the problem
statements.

(a) Locate your graded submissions for HW1, HW2, HW3 and HW4. Locate your notes, or
download the notability notes for the previous lectures.

(b) (1 point) Looking over your past work, what are one or two things you don’t understand
well or would like to review? What’s one thing you have down pat?

(c) (1 point) Set a goal (in terms of performance, score, or something else) for the final exam.

(d) (2 points) What’s your study plan to achieve that goal?

2. (1 point) What action, activity, or HW problem constitutes your best work of the term?

3. (1 point) What’s something that could have gone better, or that you would do differently if
you took the class again?

4. (1 point) How would you self-evaluate your performance in this class?

5. (1 point) Is there anything left over that you’d like to learn in the future?

Rationale: The goal of this question is to get you thinking about what you’ve learned in this course and prepare
you for the final. Good luck!

References: Homework solutions, course skeleton, and review videos on the course webpage.
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5 Problem 5 (2 Extra Credit Points): Nondeterministic Turing Ma-
chines

Recall the language of graphs that contain Hamiltonian paths from the previous homework:

A3 := {⟨G⟩ : G is a graph that contains a Hamiltonian path}

(A Hamiltonian path is a path through the graph that touches every vertex exactly once.)
In HW4, you showed how to recognize this language using a deterministic TM. (In case you

chose not to write a decider: it’s possible to write a deterministic TM that decides this TM using
a similar simple strategy.)

However, a Nondeterministic Turing Machine can solve this problem in time O(n), where n is
the number of vertices in the graph! Give a high-level description of an NTM that decides this
language in time O(n).

On an input graph G, the NTM will initially check to make sure that the input does indeed
encode a graph and reject if not. (Including this step is optional.)

Our NTM begins by nondeterministically guessing the vertex on which our path begins. It then
proceeds to nondeterministically guess each subsequent vertex on a Hamiltonian path, guessing one
vertex at a time (that is, at each step, each branch will make at most n nondeterministic guesses,
where n is the number of vertices in the input graph.) Branches die if they attempt to cross an
edge that is not in the graph. We accept if any branch successfully navigates a Hamiltonian path.

If the graph contains a Hamiltonian path, one of the O(nn) branches will correctly guess the
path and accept in O(n) steps (that is, a constant number of steps for each guess.) If the graph
does not contain a Hamiltonian path, all branches will reject after O(n) steps and the NTM will
reject.

In order to get full credit for this question, mention that the NTM nondeterministically guesses
paths, and that the Turing machine will always halt and accept on graphs with Hamiltonian paths
and always halt and reject otherwise.
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