
Homework 1 Solutions

COMS W3261, Summer B 2021

This homework is due Tuesday, 7/6/2021, at 11:59PM EST. (Monday is off: happy uni-
versity holiday.) Submit to GradeScope (course code: X3JEX4).

Grading policy reminder: LATEX is preferred, but neatly typed or handwritten solutions are
acceptable. Your TAs may dock points for indecipherable writing. Proofs should be complete; that
is, include enough information that a reader can clearly tell that the argument is rigorous.

1



1 Problem 1 (12 points)

q0

q1

q2

q31
1

1

0

0

0

0, 1

1. (4 points.) The state diagram above is defined on the alphabet Σ = {0, 1}. Write out its
formal definition (as a 5-tuple) and describe the language that it recognizes in one sentence.

The state diagram represents a DFA M = (Q,Σ, δ, q0, F ), where Q = {q0, q1, q2, q3}, Σ =
{0, 1}, F = {q3}. δ can be summarized as follows: δ(q, 0) = q for all q ∈ Q. δ(qi, 1) = qi+1 for
i ∈ {0, 1, 2} and δ(q3, 1) = q3.

M recognizes the language of strings over {0, 1} that contain at least three 1’s.

2. (4 points.) Consider the DFA M = (Q,Σ, δ, q0, F ), where Q = {q0, q1, q2}, Σ = {a, b},
F = {q1}, and δ is defined as in the following table. Draw the state diagram and describe the
language that it recognizes in one sentence. (To draw state diagrams, you may wish to use
the tool http://madebyevan.com/fsm/.)

a b

q0 q1 q2
q1 q0 q2
q2 q2 q2

2

http://madebyevan.com/fsm/


q0

q1

q2

a

b

a

b

a, b

M recognizes the language of strings over {a, b} that contain an odd number of a’s and no
occurrences of b.

3. (4 points.) Draw a state diagram for a DFA with at most 5 states that recognizes the
following language over the alphabet Σ = {o,_}:

L := {w | consists of one o, followed by one or more _ symbols, and a final o.}.

Explain in words why your DFA recognizes the language specified.

q0 q1 q2 q3

q4

o o_

_

o,_

o,_

o_

(Other equivalent state diagrams may work.)

Our state diagram contains a ‘terminal state’, q4, at which computation gets stuck: if we
ever find ourselves at q4 during the execution of our DFA on a string, we read the remaining

3



symbols and ultimately reject. The states q0, q1, q2 and q3 check to see if an input string has
the form specified and send the execution to q4 otherwise.

First, q0 checks if the leading input is an o. q1 then checks for at least one _ symbol. If either
of these checks fails, our computation goes to q4. The state q2 reads zero or more additional
_ symbols. Finally, if a second o is reached before the computation terminates, we proceed
to q3, the accept state. If at this point there are any more symbols, our string is not in the
language and we go to q4.

4



2 Problem 2 (4 points)

1. (0 points). Draw a state diagram for an NFA with at most 3 states that recognizes the
regular expression

((1 ◦ 10) ∪ 11)∗.

Explain in words why your NFA recognizes the language specified.

q0 q1 q2
1 1

0, ε

(Other equivalent state diagrams may work.)

(1 ◦ 10) evaluates to 110, so our regular expression is equivalent to the language of all strings
that can be decomposed into ‘110’ and ‘11’ substrings. First note that our NFA state diagram
accepts ε. If the string contains more symbols, the NFA nondeterministically ‘guesses’ a
decomposition into ‘110’ and ‘11’ substrings.

In particular, each branch of computation dies if the next substring in its decomposition does
not begin with ‘11’. It then nondeterministically guesses both that the next substring is ‘11’
(proceeding back to q0 on the ε edge) or reads a ‘0’ if this is possible, implicitly guessing that
the next substring is ‘110’. Any branch of computation that terminates at q0 has successively
read zero or more substrings ‘11’ or ‘110’.

2. (4 points). Draw the state diagram of a DFA (alphabet Σ = {a, b}) with at most 3 states
that recognizes the same language as the NFA whose state diagram is pictured below. Explain
in words why your DFA captures the same language as the original NFA.

q1

q2

q3

a

b

b

ε

ε

a

5



Solving this question requires simplifying this NFA, which in turn requires understanding
exactly what it does. You could do so by testing strings, reasoning about its structure, or
following the procedure for turning any NFA into a DFA outlined in lecture (this is the proof
of Theorem 1.39 in the textbook).

Either procedure reveals that if the input string is ε or starts with b, all branches of com-
putation die (and the NFA rejects). However, if the computation starts with a, branches of
computation reach all three states q1, q2, and q3. If the string ends at this point, the compu-
tation accepts. Moreover, any new input symbol, whether a or b, results in some branch of
computation at all three states. Thus this machine accepts all strings that begin with a. The
state diagram below recognizes the same language.

q0

q1

q2

a

b

a, b

a, b

6



3 Problem 3 (9 points)

1. (9 points.) Given languages A and B, define the XOR operation ⊕ as follows:

A⊕B := {x | x ∈ A or x ∈ B, but x 6∈ A ∩B}.

Prove that the class of regular languages is closed under ⊕.
One way to prove this is to modify our original proof that the regular languages are closed
under ∪. (See the proof of Theorem 1.25 in the text.)

LetM1 = (Q1,Σ, δ1, q1, F1) andM2 = (Q2,Σ, δ2, q2, F2) be DFAs that recognize the languages
A1 and A2, respectively. We’ll construct a new machine M = (Q,Σ, δ, q0, F ) that recognizes
A1 ⊕A2.

As in our previous proof, let Q = {(r1, r2) | r1 ∈ Q1, r2 ∈ Q2}, i.e., the set of all pairs of states
in Q1 and Q2, otherwise known as the Cartesian product Q1×Q2. We let Σ be unchanged, set
q0 = (q1, q2), and define our transition function so that it simulates both transition functions
δ1 and δ2: for each (r1, r2) ∈ Q and a ∈ Σ, let δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a)).

The difference from our previous construction is in the set of accept states: we define

F = {(r1, r2) | (r1 ∈ F1, r2 6∈ F2) OR (r1 6∈ F1, r2 ∈ F2)}.

As a result, M accepts a string w precisely when exactly one of M1 and M2 accepts w: in
other words, when w ∈ A1 ⊕A2.

7



4 Problem 4 (10 points)

1. (10 points). Consider the language L on the alphabet {x, o} defined as follows:

L := {w | w contains the same number of ‘xo’ and ‘ox’ substrings}.

For example, the string ‘xoxxo’ contains two ‘xo’ substrings and one ‘ox’ substring. Prove that
L is regular. (To prove this, you may draw one or more state diagrams and/or use previously
proven facts about the closure of regular languages under regular operations.)

The trick here is the realization that L is the same as the language that contains (1) all strings
that start and end with x, (2) all strings that start and end with o, and (3) the empty string.
To see this, consider (for example) any string that starts with x, and consider reading it from
left to right, counting each xo substring and each ox substring. Whenever we encounter our
first o, this creates our first xo substring. We then read o’s until we see an x, which is our first
ox substring. Continuing this logic, we can see that the number of xo and ox substrings is the
same if and only if our string ends in x. (We also accept the input string ε, which contains
no xo and ox substrings.)

To prove that L is regular, it suffices to show a NFA and prove that it recognizes L, the
language of all strings that start and end with the same character. Consider the following
NFA N0:

q0 q1 q2o

x

o x

o

This NFA accepts the empty string ε and all strings that start and end with o. (To see this,
observe that after reading the first o, our NFA is in an accept state after reading every o and
a reject state after reading every x.) Define L0 to be L(N0). By reversing the labels, we can
create a NFA N1 that recognizes the language L1, defined as ε and all strings that start and
end with x.

Thus L0 and L1 are regular. Moreover, L = L0 ∪ L1, so L is regular by the closure of regular
languages under union.

8



5 Problem 5 (1 point)

1. What in-class topic or problem did you find most confusing this week?

(Any coherent response.)

2. What in-class topic or problem did you find most interesting this week?

(Any coherent response.)

3. (Optional) Any other thoughts? Thank you!

9


	Problem 1 (12 points)
	Problem 2 (4 points)
	Problem 3 (9 points)
	Problem 4 (10 points)
	Problem 5 (1 point)

