Homework 3 Solutions

COMS W3261, Summer B 2021

This homework is due Monday, 7/19/2021, at 11:59PM EST. Submit to GradeScope
(course code: X3JEX4).

Grading policy reminder: IATEX is preferred, but neatly typed or handwritten solutions are
acceptable. Your TAs may dock points for indecipherable writing. Proofs should be complete; that
is, include enough information that a reader can clearly tell that the argument is rigorous.

The tool http://madebyevan.com/fsm/ may be useful for drawing finite state machines.

If a question is ambiguous, please state your assumptions. This way, we can give you credit for
correct work. (Even better, post on Ed so that we can resolve the ambiguity.)

http://madebyevan.com/fsm/

1 Problem 1 (12 points)

1. (6 points.) Prove that the language
A={w]| Forally € {0,1}",w # yy}

over the alphabet ¥ = {0, 1} is nonregular. You may use the pumping lemma and/or closure
properties.

Recall that the complement of a language L over the alphabet {0, 1} is the language {0, 1}*\ L:
that is, all strings over {0, 1} except those in the language L. The complement of A is

A={w|w=yy for some y € {0,1}*} = {ww | w € {0,1}*}.

We proved in class that this language is nonregular using the pumping lemma.

Assume for contradiction that A is regular. Because the class of regular languages is closed un-
der complement, this implies that A is regular. Because this is a contradiction, our assumption
is false and A is nonregular.

(We mentioned in class that the class of regular language is closed under complement. To see
this, observe that any DFA D that recognizes a language L can be converted into a DFA that
recognizes L by turning every reject state into an accept state and vice versa.)

(Proving the statement using the pumping lemma is also fine.)

2. (6 points.) Prove that the language
B ={1"0"1"|n>0,m > 1}

over the alphabet ¥ = {0, 1} is nonregular. You may use the pumping lemma and/or closure
properties.

Assume for contradiction that B is regular. Thus B satisfies the pumping lemma, and there
exists some pumping length p such that for every string s € B with |s| > p, s can be split into
substrings s = xyz such that xy'z € B for all i > 0, |y| > 0 and |zy| < p.

Consider the string s = 17017, which is in the language B. As [s| > p, s can be split into
substrings x, y, and z satisfying the conditions above if B is regular. We will show that each
division of s into substrings fails the conditions of the pumping lemma.

e Case 1: s is divided into x, y, and z such that y does not contain a 0.
In this case, zyyz = 1PH¥lp17 (if y is a substring of the first p ones) or zyyz = 117yl
(if y is a substring of the second p ones). To satisfy our three conditions, it must be true
that |y| > 0. However, this implies that zyyz ¢ B because the two substrings of zeroes
are not the same length.

e Case 2: s is divided into x, y, and z such that y contains a 0.

In this case, zy’z = 2z is a string of all zeroes. Because every string in B has a nonzero
number of ones, xz € B.

Thus there is no way to divide s into substrings z, y, and z in a way that satisfies the conditions
of the pumping lemma. This contradicts our assumption that B is regular.

(To simplify these cases, one could also note that the condition |zy| < p implies that y must
be a substring of the first string of ones in any valid split.)

2 Problem 2 (8 points)
1. (8 points.) Is the language
C={a'Vck|i,jk>0i<jyu{a¥c |i,j, k>0 <k}U{a V' |i,jk>0k<i}
over the alphabet ¥ = {a, b, ¢} a regular language? Prove your answer.

Yes, this language is regular (even though the three component languages may not be.) To see
this, observe that C' is a subset of the language

L={a'¥c* |i,j,k>0}.

When is a string in L but not in C'?7 Precisely when the three additional conditions i < j, j < k,
and k < all fail. This occurs when ¢ > 5 > k > ¢: in other words, never. Thus C' = L.

It remains to show that L is regular. To see this, observe that the regular expression a*b*c*
evaluates to L.

3 Problem 3 (10 points)

1. (4 points). Convert the DFA below into a GNFA state diagram using the procedure outlined
in class. (This procedure is also outlined in the textbook on page 71.)

The procedure outlined in class has several steps:

(a) Add a new start state gsiqr¢ connected by an e-arrow to the old start state.
(b) Add a new accept state ggecept With e-arrows from the old accept state(s).

(c) If there are multiple edges connecting any pair of states, merge them with a union
operation.

(d) Finally, add @-arrows between every ordered pair of states not connected by a transi-
tion, excepting transitions to the start state and from the accept state. (This includes
transitions from states to themselves.)

The resulting state diagram is as follows:

1

2. (6 points). Use the procedure CONV ERT(G) outlined in class (and on page 73 of the text-
book) to compute the values of the transitions ¢ (gstart; ¢2), 0 (¢start, Gaccept)s and 6’ (g2, Gaccept)
after removing state q; from the GNFA below. Hint: Recall that (* evaluates to the language

{e}.

0
(

The procedure CONV ERT(G) reduces the number of states of G one by one. At each step, we
select a state grip # Gstart, Qaccept and remove it from the state set. For each pair of states (g, ;)

such that ¢; # Gaccept, @j 7 Gstart, We set
8'(gi,qj) = RiR5R3 U Ry,

where Ry = 6(%’7(]rip)a Ry = 5(Qrip7Qrip)a R3 = 5(QTip7qj)7 and Ry = 5(%” Qj)~
We designate ¢, = ¢1 and consider each possible pair of states (g;, ¢;) in turn:

1. (¢i»qj) = (gstart, g2). In this case, Ry = 11, Ry = 0, R3 = 0", Ry = 10. We set ¢'(qstart, q2) =
RiR5R3U Ry = 110*0* U 10 = 110* U 10.

2. (Qi7Qj) = (QStarta(Zaccept)' In this case, Rl - 117R2 = ®7R3 = 22,R4 = (Z) We set
y(‘]st(zrta qg,ccept) = RlR;RJS URy = 11(3*22 Ud=11%%.

3. (in Qj) = (q2aqaccept)- In this case, Ry = 0+a Ry = (Da R3 = EZ, Ry =¢. We set 6/((]27 Qaccept) =
RlR;Rg URy = 0r*EX Ue=0TEX Ue.

4 Problem 4 (12 points)

1. (3 points). What is the language of the grammar G; below? Here S, A, and B are the
variables and 0 and 1 are the terminals. Explain your reasoning.

S —1A1
A—S|B
B —0B|e

By examining rules 1 and 2, we see that we generate two equal length strings of 1’s on either
side of the variable A until we use the production rule A — B. At that point, we generate
some number of 0’s before producing a terminal empty string. The language of this grammar
is thus

{1"0™1" | n > 1,m > 0}.

2. (3 points). What is the language of the grammar Gy below? Here A and B are the variables
and x, y, and z are the terminals. Explain your reasoning.

A — zAx |yAy | zAz | B
B—oz|y|z]e

The first rule produces pairs of x’s, y’s, and z’s in any order on either side of the variable
A until we use the production rule A — B. At this point, we finish our string with an z,
Yy, 2z, or empty string in the middle. The result is the language of all palindromes on the
alphabet ¥ = {z,y,2}. (To see this, recall that w’ denotes the reverse of w and observe
that even-length palindromes have the form ww® for some string w € ¥* and that odd-length

palindromes have the form waw®, wyw’, or wrw? for some string w € ¥*.)

3. (3 points). Design a grammar for the language
D = {a'Vca'b' | i,j > 1}

and explain why your grammar produces D.
Define the grammar G3 = {{A, B}, {a,b,c}, R, A}. The set of rules R is

A — aAb | aBb
B — bBa | bea

The first rule generates two equal-length substrings of a’s and b’s on either side of the variable
B. These substrings have length at least one, as guaranteed by the production rule A — aBa.
The second rule generates two equal-length substrings of b’s and a’s on either side of the
terminal ¢. The final production rule B — bcb ensures that these substrings have length at
least 1.

4. (3 points). Design a grammar for the language
L = I(saw Umet U loved)(the U a)(very)* (large U tiny U red)(frog U dog)

and explain why your grammar produces L. (You can treat each word as a single terminal

symbol.)
Define the grammar G4 = {{S, A, B,C, D, E},
{I, saw, met,loved, the, a,very, large, tiny, red, frog,dog}, R, S}. The set of rules R is
S — IABCDE
A — saw | met | loved
B — the | a
C — veryC | e
D — large | tiny | red
E — frog | dog

This language is a long concatenation, as is its grammar. Variables S, A, B, D, and E are
straightforward replacements with terminals. The variable C' is replaced with some number

of concatenations of the terminal ‘very.’

	Problem 1 (12 points)
	Problem 2 (8 points)
	Problem 3 (10 points)
	Problem 4 (12 points)

