
Homework 3 Solutions

COMS W3261, Summer B 2021

This homework is due Monday, 7/19/2021, at 11:59PM EST. Submit to GradeScope
(course code: X3JEX4).

Grading policy reminder: LATEX is preferred, but neatly typed or handwritten solutions are
acceptable. Your TAs may dock points for indecipherable writing. Proofs should be complete; that
is, include enough information that a reader can clearly tell that the argument is rigorous.

The tool http://madebyevan.com/fsm/ may be useful for drawing finite state machines.
If a question is ambiguous, please state your assumptions. This way, we can give you credit for

correct work. (Even better, post on Ed so that we can resolve the ambiguity.)

1

http://madebyevan.com/fsm/

1 Problem 1 (12 points)

1. (6 points.) Prove that the language

A = {w | For all y ∈ {0, 1}∗, w 6= yy}

over the alphabet Σ = {0, 1} is nonregular. You may use the pumping lemma and/or closure
properties.

Recall that the complement of a language L over the alphabet {0, 1} is the language {0, 1}∗\L:
that is, all strings over {0, 1} except those in the language L. The complement of A is

A = {w | w = yy for some y ∈ {0, 1}∗} = {ww | w ∈ {0, 1}∗}.

We proved in class that this language is nonregular using the pumping lemma.

Assume for contradiction that A is regular. Because the class of regular languages is closed un-
der complement, this implies that A is regular. Because this is a contradiction, our assumption
is false and A is nonregular.

(We mentioned in class that the class of regular language is closed under complement. To see
this, observe that any DFA D that recognizes a language L can be converted into a DFA that
recognizes L by turning every reject state into an accept state and vice versa.)

(Proving the statement using the pumping lemma is also fine.)

2. (6 points.) Prove that the language

B = {1n0m1n | n ≥ 0,m ≥ 1}

over the alphabet Σ = {0, 1} is nonregular. You may use the pumping lemma and/or closure
properties.

Assume for contradiction that B is regular. Thus B satisfies the pumping lemma, and there
exists some pumping length p such that for every string s ∈ B with |s| ≥ p, s can be split into
substrings s = xyz such that xyiz ∈ B for all i ≥ 0, |y| > 0 and |xy| ≤ p.
Consider the string s = 1p01p, which is in the language B. As |s| ≥ p, s can be split into
substrings x, y, and z satisfying the conditions above if B is regular. We will show that each
division of s into substrings fails the conditions of the pumping lemma.

• Case 1: s is divided into x, y, and z such that y does not contain a 0.
In this case, xyyz = 1p+|y|01p (if y is a substring of the first p ones) or xyyz = 1p01p+|y|

(if y is a substring of the second p ones). To satisfy our three conditions, it must be true
that |y| > 0. However, this implies that xyyz 6∈ B because the two substrings of zeroes
are not the same length.

• Case 2: s is divided into x, y, and z such that y contains a 0.
In this case, xy0z = xz is a string of all zeroes. Because every string in B has a nonzero
number of ones, xz 6∈ B.

2

Thus there is no way to divide s into substrings x, y, and z in a way that satisfies the conditions
of the pumping lemma. This contradicts our assumption that B is regular.

(To simplify these cases, one could also note that the condition |xy| ≤ p implies that y must
be a substring of the first string of ones in any valid split.)

3

2 Problem 2 (8 points)

1. (8 points.) Is the language

C = {aibjck | i, j, k ≥ 0; i ≤ j} ∪ {aibjck | i, j, k ≥ 0; j ≤ k} ∪ {aibjck | i, j, k ≥ 0; k ≤ i}

over the alphabet Σ = {a, b, c} a regular language? Prove your answer.

Yes, this language is regular (even though the three component languages may not be.) To see
this, observe that C is a subset of the language

L = {aibjck | i, j, k ≥ 0}.

When is a string in L but not in C? Precisely when the three additional conditions i ≤ j, j ≤ k,
and k ≤ i all fail. This occurs when i > j > k > i: in other words, never. Thus C = L.

It remains to show that L is regular. To see this, observe that the regular expression a∗b∗c∗

evaluates to L.

4

3 Problem 3 (10 points)

1. (4 points). Convert the DFA below into a GNFA state diagram using the procedure outlined
in class. (This procedure is also outlined in the textbook on page 71.)

q0

q1

q2

0

1

0

1

0, 1

The procedure outlined in class has several steps:

(a) Add a new start state qstart connected by an ε-arrow to the old start state.
(b) Add a new accept state qaccept with ε-arrows from the old accept state(s).
(c) If there are multiple edges connecting any pair of states, merge them with a union

operation.
(d) Finally, add ∅-arrows between every ordered pair of states not connected by a transi-

tion, excepting transitions to the start state and from the accept state. (This includes
transitions from states to themselves.)

The resulting state diagram is as follows:

q0

q1

q2

qacceptqstart

0

1

0

1

0 ∪ 1

ε

ε

ε

∅

∅

∅

∅

∅

∅ ∅

∅

5

2. (6 points). Use the procedure CONV ERT (G) outlined in class (and on page 73 of the text-
book) to compute the values of the transitions δ′(qstart, q2), δ′(qstart, qaccept), and δ′(q2, qaccept)
after removing state q1 from the GNFA below. Hint: Recall that ∅∗ evaluates to the language
{ε}.

qstart

q1

q2

qaccept

11

∅

0∗ 0+

ΣΣ

ε
10

1 ∪ 0

∅

The procedure CONV ERT (G) reduces the number of states of G one by one. At each step, we
select a state qrip 6= qstart, qaccept and remove it from the state set. For each pair of states (qi, qj)
such that qi 6= qaccept, qj 6= qstart, we set

δ′(qi, qj) = R1R
∗
2R3 ∪R4,

where R1 = δ(qi, qrip), R2 = δ(qrip, qrip), R3 = δ(qrip, qj), and R4 = δ(qi, qj).
We designate qrip = q1 and consider each possible pair of states (qi, qj) in turn:

1. (qi, qj) = (qstart, q2). In this case, R1 = 11, R2 = ∅, R3 = 0∗, R4 = 10. We set δ′(qstart, q2) =
R1R

∗
2R3 ∪R4 = 11∅∗0∗ ∪ 10 = 110∗ ∪ 10.

2. (qi, qj) = (qstart, qaccept). In this case, R1 = 11, R2 = ∅, R3 = ΣΣ, R4 = ∅. We set
δ′(qstart, qaccept) = R1R

∗
2R3 ∪R4 = 11∅∗ΣΣ ∪ ∅ = 11ΣΣ.

3. (qi, qj) = (q2, qaccept). In this case, R1 = 0+, R2 = ∅, R3 = ΣΣ, R4 = ε. We set δ′(q2, qaccept) =
R1R

∗
2R3 ∪R4 = 0+∅∗ΣΣ ∪ ε = 0+ΣΣ ∪ ε.

6

4 Problem 4 (12 points)

1. (3 points). What is the language of the grammar G1 below? Here S, A, and B are the
variables and 0 and 1 are the terminals. Explain your reasoning.

S → 1A1

A→ S | B
B → 0B | ε

By examining rules 1 and 2, we see that we generate two equal length strings of 1’s on either
side of the variable A until we use the production rule A → B. At that point, we generate
some number of 0’s before producing a terminal empty string. The language of this grammar
is thus

{1n0m1n | n ≥ 1,m ≥ 0}.

2. (3 points). What is the language of the grammar G2 below? Here A and B are the variables
and x, y, and z are the terminals. Explain your reasoning.

A→ xAx | yAy | zAz | B
B → x | y | z | ε

The first rule produces pairs of x’s, y’s, and z’s in any order on either side of the variable
A until we use the production rule A → B. At this point, we finish our string with an x,
y, z, or empty string in the middle. The result is the language of all palindromes on the
alphabet Σ = {x, y, z}. (To see this, recall that wR denotes the reverse of w and observe
that even-length palindromes have the form wwR for some string w ∈ Σ∗ and that odd-length
palindromes have the form wxwR, wywR, or wxwR for some string w ∈ Σ∗.)

3. (3 points). Design a grammar for the language

D = {aibjcajbi | i, j ≥ 1}

and explain why your grammar produces D.

Define the grammar G3 = {{A,B}, {a, b, c}, R,A}. The set of rules R is

A→ aAb | aBb
B → bBa | bca

The first rule generates two equal-length substrings of a’s and b’s on either side of the variable
B. These substrings have length at least one, as guaranteed by the production rule A→ aBa.
The second rule generates two equal-length substrings of b’s and a’s on either side of the
terminal c. The final production rule B → bcb ensures that these substrings have length at
least 1.

7

4. (3 points). Design a grammar for the language

L = I(saw ∪met ∪ loved)(the ∪ a)(very)∗(large ∪ tiny ∪ red)(frog ∪ dog)

and explain why your grammar produces L. (You can treat each word as a single terminal
symbol.)

Define the grammar G4 = {{S,A,B,C,D,E},
{I, saw,met, loved, the, a, very, large, tiny, red, frog, dog}, R, S}. The set of rules R is

S → IABCDE

A→ saw | met | loved
B → the | a
C → veryC | ε
D → large | tiny | red
E → frog | dog

This language is a long concatenation, as is its grammar. Variables S, A, B, D, and E are
straightforward replacements with terminals. The variable C is replaced with some number
of concatenations of the terminal ‘very.’

8

	Problem 1 (12 points)
	Problem 2 (8 points)
	Problem 3 (10 points)
	Problem 4 (12 points)

