
Computer Science Theory Final Exam

COMS W3261, Summer B 2021

This exam will be available from 12:01 AM EST on Tuesday, 8/10/2021 until Wednesday,
8/11/2021, at 11:59PM EST. You have 12 hours to complete this exam from the time you down-
load it; you can use any 12 hours in the 48-hour window to work on the exam. The exam is due
Wednesday, 8/11/2021, at 11:59PM EST with NO EXTENSIONS. Submit to GradeScope
(course code: X3JEX4).

Grading policy reminder: LATEX is preferred, but neatly typed or handwritten solutions are
acceptable. Your TAs may dock points for indecipherable writing. Proofs should be complete; that
is, include enough information that a reader can clearly tell that the argument is rigorous.

If a question is ambiguous, please state your assumptions. This way, we can give you credit for
correct work. (Even better, post on Ed so that we can resolve the ambiguity.)

You can consult the following resources during the exam:

1. Your notes and class notes posted on the course webpage.

2. Lecture recordings on YouTube and in-class recordings in the Zoom recordings folder on
CourseWorks.

3. Past homework problems, your homework answers, and solutions posted on the course web-
page.

4. The textbook.

5. Past questions posted on Ed. (You may post on Ed during the exam, but please do not
answer other student’s questions or provide any details that might help others solve a problem.
Answers from instructors will be limited to basic typo correction and clarifications only.)

6. Resources for LATEX formatting that are unrelated to the course material.

Any resources not listed here, including all reference sources beyond the textbook, are not permitted.

1

1 Problem 1 (10 points)

For this problem, consider the NFA state diagram pictured below.

q6q5

q1

q2 q3 q4

q0

b

a

0

0

1

ε

ε

ε

ε

ε

1. (3 points.) Does this NFA accept the empty string ε? What about the string 00101? What
about the string ba0011?

This NFA accepts the empty string ε and the string 00101. It does not accept the string
ba0011.

2. (2 points.) In class, we showed that the class of regular languages was closed under Kleene star
(∗) by demonstrating that, given an NFA N that recognizes any language A, we can convert
N into a new NFA N ′ that recognizes A∗. The NFA pictured above was created by this
conversion process. Which transition(s) or state(s) may have been added during conversion?

To convert N into N ′, we:

(a) Add ε-edges from each accept state to the start state.

(b) Add a new start/accept state with a ε-edge to the old start/accept state.

This corresponds to the ε edges from q4 and q5 to q1, the old start state. We have also added
the new start state q0 and the ε-edge from q0 to q1.

3. (5 points.) Write a regular expression that evaluates to the same language that the NFA
recognizes. Explain in a few sentences why the expression and the NFA represent the same
language. (Hint: begin by reverse-engineering the conversion process for ∗.)

If we remove the ε-edges and state q0 corresponding to the ∗ modification, we are left with an
NFA that accepts a string if (1) a branch of computation takes the ε-edge from q1 to q2 and
is accepted by the component with states q2, q3, and q4 or (2) a branch of computation takes
the ε-edge from q1 to q5 and is accepted by the component with states q5 and q6.

In other words, the language recognized by the NFA is the star (∗) of the union (∪) of the
languages recognizes by these two components. The top component recognizes 00∗1 = 0+1

2

and the bottom component recognizes ba∗. Thus the regular expression is (0+1 ∪ (ba)∗)∗.
(Equivalent expressions include (00∗1 ∪ (ba)∗)∗ and (0+1 ∪ ba)∗.)

3

2 Problem 2 (14 points)

For this problem, consider the language

L1 = {0i1i+j0j | i, j ≥ 0}.

1. (7 points.) Use the pumping lemma for regular languages to prove that L is nonregular.

Assume for contradiction that L1 is a regular language. By this assumption L1 satisfies the
pumping lemma and there exists some integer p such that any string s ∈ L1 with |s| ≥ p
satisfies the following three properties:

(a) xykz ∈ L1 for any k ≥ 0,

(b) |y| ≥ 0, and

(c) |xy| ≤ p.

Consider the string s = 0p12p0p, which is in the language and has length 4p ≥ p. We will
show that no division of s into substrings x, y, and z satisfies the conditions of the pumping
lemma.

Consider any division that satisfies the conditions |xy| ≤ p and |y| > 0. This implies that the
string y is a nonempty substring of the first substring 0p. Thus xy2z = 0p+|y|12p0p 6∈ L1, as
p+ |y|+ p 6= 2p. Thus L1 does not satisfy the pumping lemma and our assumption must be
false. L1 is nonregular.

2. (7 points.) Prove that L is context-free by creating a context-free grammar that generates L.
Explain in a few sentences why your CFG generates exactly the strings in L.

Consider the following context-free grammar G:

S → AB

A→ 0A1 | ε
B → 1B0 | ε

Any derivation that begins with the start symbol S first yields the string AB. To complete
the derivation, we must then use the first rule for A some number i ≥ 0 times before replacing
A with ε and use the first rule for B some number j ≥ 0 times before replacing B with ε.
This produces the string 0i1i+j0j . (There are several other equivalent grammars that might
work.)

4

3 Problem 3 (8 points)

Recall that the XOR operator ⊕ evaluates to 1 if exactly one of its inputs is 1: thus 0 ⊕ 0 = 0,
0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0. Given two binary strings w, v ∈ {0, 1}∗ that have the same length,
the binary XOR of w and v, written w ⊕ v, is the string x such that wi ⊕ vi = xi for all i. For
example,

01001⊕ 11000 = 10001.

Consider the language

L2 = {a#b#c | a, b, c ∈ {0, 1}∗ and a⊕ b = c}.

1. (8 points.) Prove that L2 is decidable by writing an implementation-level description of a
Turing machine that decides L2. (Don’t forget to check that your input is correctly formatted.)

We can decide L2 using a Turing machine M that computes as follows. M will first check to
ensure that the input consists of three equal-length binary strings separated by # symbols,
then check that the XOR relation holds.

M = “On input w :

1. Scan the input string from left to right and reject unless we see exactly two # symbols.
Accept if a, b, and c are all empty. Return the head to the leftmost tape square.

2. Shuttle back and forth between the strings a and b, crossing off one symbol from each string
in turn and using marked symbols to track our place. Reject unless |a| = |b|. Uncross all
crossed symbols and return to the beginning of b.
3. Shuttle back and forth between b and c to check length as in the previous step.
4. We now know that |a| = |b| = |c|. Shuttle from a1 to b1 to c1, crossing out each symbol and
rejecting unless a1 ⊕ b1 = c1. Use dot markers to track our place. Repeat this for a2, b2, c2 etc.
until all symbols are crossed off. Accept if we have not yet rejected.”

Other solutions, such as storing the XOR of a and b on a second tape and checking this against
c, or merging the length-checking and XOR-checking steps, should be accepted if implemented
correctly.

5

4 Problem 4 (8 points)

1. (4 points.) Prove that the language

L3 = {a | a is a prime number that is also the sum of two square numbers}

is decidable by writing a high-level description of a Turing machine that decides L3.

First, our TM determines if a is prime by checking all numbers smaller than a and rejecting
if any divides a. Second, our TM determines if a is the sum of two squares by checking if
b2 + c2 = a for every pair of integers (b, c) such that b2, c2 ≤ a. Accept if a is prime and the
sum of two squares and reject if not.

2. (4 points.) Prove that the language

L4 = {〈A〉 | A is a Turing machine that halts on any input string w ∈ Σ∗}

is recognizable by writing a high-level description of a Turing machine that recognizes L4.

The following is a high-level description of a Turing machine M4 that decides L4. Say that
s1, s2, s3, . . . is a list of all possible strings in Σ∗.

M4 = “On input 〈A〉, where A is a TM:
1. For each integer i = 1, 2, . . . , simulate A on s1, s2, . . . , si for i steps.
Accept if any simulation halts.”

Note that at any iteration of our loop we simulate A on a finite number of strings for a finite
number of steps, which makes the iteration finite. If we try to simulate A on all strings for
any finite number of steps, or on one string for a (potentially infinite) number of steps, the
recognizer may fail to recognize some TMs in L4.

6

5 Problem 5 (10 points)

1. Prove that the language

L5 = {〈A,B〉 | A and B are Turing machines and L(A) ⊆ L(B)}

is undecidable by reducing another undecidable language to L5. You may not use Rice’s
theorem. (Hint: it suffices to show that if you could build a decider for L5, you could build a
decider for a language that is proved undecidable in lecture, in homework or in the textbook.)

Recall the language
ETM = {〈A〉 | A is a TM and L(A) = ∅},

which we proved undecidable in lecture. We’ll show that if some decider S exists for the
language L5, we could decide ETM . This is a contradiction and thus it follows that L5 is
undecidable. Assuming the existence of S, we can build the following TM for ETM .

T = “On input 〈A〉, where A is a TM:
1. Let B be a TM that rejects on all inputs.
2. Run S on 〈A,B〉 and accept/reject if S accepts/rejects.”

To see that T decides ETM , first observe that T always halts (this follows from the fact that
S, our hypothetical decider for L5, always halts.)

If L(A) = ∅, then L(A) ⊆ L(B) as ∅ ⊆ ∅, S accepts, and thus T accepts. If L(A) 6= ∅, then
L(A) 6⊆ L(B), S rejects, and thus T rejects. Thus we correctly decide ETM .

7

6 Problem 6 (3 extra credit points)

1. (3 points). Consider the following language:

SELFENUM = {〈E〉 | E is an enumerator that never prints out its own description 〈E〉}.

Recall that a language is Turing-recognizable if and only if some enumerator enumerates it.
Show that SELFENUM is not Turing-recognizable by finding a paradox.

Assume for contradiction that F is an enumerator for SELFENUM . Thus F prints out the
description of all enumerators that don’t enumerate themselves.

Does F enumerate itself? If it does, then F 6∈ SELFENUM so this is incorrect. If it does not,
then F ∈ SELFENUM so this is incorrect. Thus the existence of F creates a paradox.

8

	Problem 1 (10 points)
	Problem 2 (14 points)
	Problem 3 (8 points)
	Problem 4 (8 points)
	Problem 5 (10 points)
	Problem 6 (3 extra credit points)

