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Abstract

In this explanatory note, we consider the problem of Sumset Containment (SSC): given an
integer set S and an integer parameter k, does there exist a set A with |A+A| ≥ k such that the
sumset A+A = {a+ b | a, b ∈ A} is a subset of S? We prove that this problem is W[1]-complete
(in k) and present a natural exact algorithm that runs in time O∗(3n/6) = O∗(1.201n). As an
extension, we use techniques from exact algorithms and additive combinatorics to improve the
exponent when k = ρn for any ρ ∈ [0, 1).

Our work suggests the following open problem for future research: does there exist an
O∗(3(1/6−ε)n)-time exact algorithm for Sumset Containment for any constant ε > 0?

1 Introduction

The sumset of an integer set A, defined as

A+A := {a+ b | a, b ∈ A}

provides a variety of information about A’s additive structure. A central problem in additive
combinatorics is that of characterizing this structure in sets for which |A+A| is small: for example,
Freiman’s celebrated theorem states that if |A+A| ≤ K|A|, there exist functions d and f such that
A is contained within a generalized arithmetic progression of dimension d(K) and volume f(K)|A|,
where d and f are functions that depend on K but not the size of the set |A| [Fre99]. The sumset
has proved an immensely fruitful object; see [TV06], Chapter 2 for a broad overview.

Given the importance of the sumset to mathematics, it is natural to consider the algorithmic
question of determining whether a set is a sumset. In 2023, Chen, Nadimpalli, Randolph, Servedio,
and Zamir considered this problem (on the Boolean cube) from the perspective of property testing
and proved hardness results [CNR+]. A complementary question is that of determining the smallest
sumset that contains the input set, which has been previously studied under the name 2-Sumset
Cover [FFV09, BFRV15]. In this note, we consider a fundamental question that complements
2-Sumset Cover: given an input set, what is the largest sumset that it contains?

Formally, our problem is as follows.

Problem 1: Sumset Containment (SSC)

Input. A set of integers S = {s1, s2, . . . , sn} and a parameter k ≤ n.
Output. A set of integers A (hereafter referred to as an “additive root”) such that A+A ⊆ S
and |A+A| ≥ k, or “NO” if no such set exists.

When k = n, the question reduces to, “Does there exist an integer set A such that A+A = S?”
We refer to this problem as Sumset Equivalence (SSE).
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In this note, we first reduce SSC to a graph problem concerning cliques in edge-colored graphs
and the use this reduction to solve SSC and SSE in time O∗(3n/6) (Section 3). All three results
follow via a reduction from k-Clique. This leads to a natural open question, to which we do not
know the answer:

Open Problem 1. Does there exist an exact algorithm for Sumset Containment (or Sumset Equiv-
alence) that runs in time O∗(3(1/6−ε)n) for some constant ε > 0?

We also show that SSC is NP-complete, W[1]-complete, and cannot be solved in time 2o(
√
n)

(Section 4).
The most difficult instances of SSC may be those in which k = n: when n− k = Ω(n), we can

improve the runtime of our algorithms exponentially via a careful branch-and-bound algorithm. We
prove this extension in Appendix A.

1.1 Related Work

As mentioned above, SSC complements the existing problem 2-Sumset Cover : given a set S, does
there exist a set A of cardinality at most k such that S ⊆ A + A? This problem was first studied

by Fagnot, Fertin, and Vialette, who showed APX-hardness and a 5
k2(k+3)

2 poly(k)-time algorithm
[FFV09]. This was later improved to 2(3 log k−1.4)kpoly(k) by Bulteau, Fertin, Rizzi, and Vialette
[BFRV15].1 2-Sumset Cover is itself a specialization of Generating Set, in which the goal is to find
a minimal set A such that S ⊆ {

∑
i∈I i ; I ⊆ A} [CKSY07].

Instead of parameterizing SSC in the size of the sumset |A+A|, one could parameterize Sumset
Containment in the size of the additive root |A|: given S, does there exist A of size |A| ≥ k with
A + A ⊆ S? This problem is equivalent to k-Clique on the Cayley sum graph of S. k-Clique on
Cayley graphs is known to be NP-hard [GR17], but the problem can be solved by existing algorithms
for k-Clique in time at most O∗(1.888n) [TT77, Jia86, Rob86, Rob01].

Chen et al. have studied the problem of determining whether a subset of the Boolean hypercube
Fn
2 is (close to) a sumset in the property testing model, in which an algorithm’s goal is to distinguish

between sets containing a large sumset and sets that are ε-far from containing a large sumset. Here
ε represents a constant fraction of the universe from which elements are drawn and the complexity
of the algorithm is measured in terms of the number of queries to the indicator function of the
input set. These authors prove 2Ω(n) lower bounds but no nontrivial upper bounds on the problem
[CNR+].

More broadly, our work falls into the growing body of work at the intersection of theoretical
computer science and additive combinatorics: for surveys, see [Bib13, Lov17, Tre09, Vio11].

2 Preliminaries

Big-O Notation. We supplement standard big-O notation with an asterisk (e.g., O∗ and Ω∗) to
indicate the suppression of poly(n) factors, regardless of the size of the argument. Thus O∗(2n)
indicates 2n · poly(n) and O∗(1) indicates poly(n).
Sets. We write [m] as shorthand for the integer set {1, 2, . . . ,m} and [ℓ : m] as shorthand for the
integer set {ℓ, ℓ + 1, . . . ,m − 1,m}. Given an integer set X and integer a, we write X + a (resp.
X − a) as shorthand for {x+ a | x ∈ X} (resp. {x− a | x ∈ X}) and X/a for {x/a | x ∈ X}.

1To prevent confusion, we note that although 2-Sumset Cover is FPTin k, and Sumset Containment is W[1]-
complete, the two results are not quite comparable: in 2-Sumset Cover, the parameter k measures the size of the
additive root and, most importantly, k = Ω(

√
n) is guaranteed. In Sumset Containment k measures the size of the

sumset and may be arbitrarily small.
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Vectors and Norms. Given a vector v ∈ Zn, for i ∈ Z we let #i(v) denote the number of
i’s appearing as components of v. The ℓ1-norm ||v||1 is the sum of the absolute value of each
component of v. Given a function f and a subset S of the domain of f , we adopt the convention
f(S) = {f(s) | s ∈ S}.

3 An O∗(3n/6)-Time Algorithm for Sumset Containment

In this section, we reduce SSC to the problem of finding a clique in a certain graph which covers
at least k differently-colored edges. We can then solve the problem by enumerating the maximal
cliques of this graph.

3.1 Reduction to a Promise Problem

Because the correctness of a solution to SSC can be checked in polynomial time, we may assume
without loss of generality that our algorithms never return false positives. Equivalently, we can
ignore the “No” case and consider the promise problem in which we are guaranteed a hidden additive
root A satisfying A+A ∈ S and |A+A| ≥ k without loss of generality.

Let (S, k) be an instance of SSC for which there exists a solution A. Let m := |A| and let a1
and am denote the smallest and largest elements of A, respectively. Our algorithms will take as
input “guessed” values for a1 and am and will succeed (with high probability, if the algorithm is
randomized) if the guesses are correct. Because a1 + a1, am + am ∈ S, we know that a1, am ∈ S/2.
As a result, we can guess every possible pair (a1, am) in exchange for an O(n2)-factor increase in
runtime which is absorbed by the O∗ notation. Thus we assume our algorithm receives the smallest
and largest elements a1 and am of a certain hidden solution A as part of its input without loss of
generality.

3.2 Bounds on the Candidate Set

Our first task is to bound the search space: given a SSC instance (S, k), we will construct a finite
candidate set C that is a superset of any hidden solution A. We can then search within C for A.
We begin with the following observation:

Observation 1 (Supersets of the Candidate Set). Let (S, k) be an instance of SSC with a hidden
solution A = {a1, . . . , am}. A satisfies the following expressions:

1. A ⊆ S − a1.

2. A ⊆ S − am.

3. A ⊆ S/2.

4. A ⊆ [a1 : am].

Proof. Given A + A ⊆ S, expressions (1) and (2) follow from the more general observation that
A + a ⊆ A + A for any a ∈ A. Expression 3 follows from the fact that {2a | a ∈ A} ⊆ A + A.
Expression 4 follows immediately from the definition of a1 and am.

With respect to an instance (S, k) of SSC, a1, and am, we define the initial candidate set

C0(S) := (S − a1) ∩ (S − am) ∩ S/2 ∩ [a1 : am]. (1)

By Observation 1 we have A ⊆ C0(S). Carefully examining the definition of C0(S) allows us to
bound its cardinality:
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Observation 2 (Cardinality of the Candidate Set). Define C0(S) with respect to an input set S
and values a1 < am as above. We have

|C0(S)| ≤ ⌈n/2⌉.

Proof. First, consider the fact that C0(S) ⊆ (S − a1) ∩ [a1 : am] by definition. The largest element
s ∈ S such that s− a1 ∈ [a1 : am] is a1 + am, which in turn implies

|(S − a1) ∩ [a1 : am]| ≤ |{s ∈ S | s ≤ a1 + am}|. (2)

By symmetry, the fact that C0(S) ⊆ (S − am) ∩ [a1 : am] implies that the smallest element s ∈ S
such that s− am ∈ [a1 : am] is a1 + am, which gives

|(S − am) ∩ [a1 : am]| ≤ |{s ∈ S | s ≥ a1 + am}|. (3)

Combining Equations (1) to (3), we have

|C0(S)| ≤ min(|(S − a1) ∩ [a1 : am]|, |(S − am) ∩ [a1 : am]|) (4)
≤ min(|{s ∈ S | s ≤ a1 + am}|, |{s ∈ S | s ≥ a1 + am}|) (5)
≤ ⌈|S|/2⌉, (6)

as claimed.

Observation 2 implies that the following simple algorithm for SSC runs in time O∗(2n/2):

1. Fix an SSC input (S, k) and solution elements a1 and am.

(a) Construct C0(S) with respect to a1 and am.

(b) For every B ⊆ C0(S), test if B +B ∈ S and |B +B| ≥ k.

3.3 Candidate Graphs

In order to improve on our brute force algorithm, it will helpful to frame the problem in terms of a
graph on the vertex set C0(S). The idea of constructing such a graph on possible elements of A is
due to Lev [Lev]; here, we improve on the approach by using a smaller candidate set.

Definition 1 (Candidate Graph). With respect to a SSC instance (S, k) and given solution elements
a1 and am, the candidate graph is the (pseudo)graph

GS = (C0(S), {(ci, cj)|ci + cj ∈ S}).

Note that we include the self-loop (c, c) if c+ c ∈ S.

Given an edge (ci, cj), we refer to the sum ci + cj as the color of the edge. The frequency f(s)
of integer s refers to the number of s-colored edges in GS . By construction, there is a one-to-one
mapping between solutions of (S, k) and cliques in GS that include edges of at least k colors.
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3.4 A Simple Exact Algorithm

Theorem 1. SSC can be solved in time O∗(3n/6) = O∗(1.2010n) and polynomial space.

Proof. To solve a SSC instance (S, k), it suffices to find a clique in GS that covers edges of at least
k distinct colors. Because any solution clique is a subgraph of a maximal solution clique, it suffices
to enumerate and check maximal cliques in the candidate graph GS .

A graph on |C0(S)| ≤ ⌈n/2⌉ vertices contains at most Γ := 3⌈n/6⌉ maximal cliques [MM65], and
these cliques can be enumerated in time poly(n) · Γ [TIAS77, LLRK80] and space O(n2) [TIAS77].
Checking each clique to see if it is a solution takes time and space O(n2).

Obvious strategies to improve the runtime of this algorithm include further bounding the size
of the candidate set and devising a strategy more efficient than enumerating all maximal cliques in
the candidate graph. However, we have so far been unable to improve over O∗(3n/6) in the worst
case.

Candidate graphs with Ω∗(3n/6) maximal cliques correspond to SSC instances in which k ≈
n. When k ≤ (1 − Ω(1))n, we can get exponential improvements on the runtime, although the
algorithms are more involved. See Appendix A for details.

4 Hardness Results

Theorem 2 (Hardness of SSC). Our hardness results for SSC are as follows:

1. SSC is NP-complete.

2. SSC is W[1]-complete (parameterized in sumset size k).

3. SSC cannot be solved in time 2o(
√
n) under the Exponential Time Hypothesis.

Proof. SSC is trivially in NP. Statements (1) and (2) thus follow immediately from Proposition 1
(reduction from k-Clique to SSC) and Proposition 2 (membership in W[1]), both proved below.

Our reduction transforms an instance of k-Clique on n vertices into an equivalent O(n2)-item
instance of k(k+1)

2 -SSC. Thus a 2o(
√
n)-time algorithm for SSC would allow us to solve k-Clique in

time 2o(n), which in turn would refute the ETH [IPZ01].

Proposition 1. SSC is NP-hard and W[1]-hard.

Proof. Given an instance G = (V,E) of the NP-hard, W[1]-hard problem k-Clique, we transform it
into an instance (S, k(k+1)

2 ) of SSC over Zn as follows:

1. Convert G into a pseudograph by creating self-loops (vi, vi) for all vi ∈ V .

2. Assign each vertex vi ∈ V the vector weight w(vi) = ei ∈ Zn, where ei denotes the basis
vector with a 1 in the ith coordinate and zeroes elsewhere.

3. Assign each edge (vi, vj) ∈ E the weight w(vi, vj) = w(vi)+w(vj) and let S be the set of edge
weights.

From SSC on Zn, we can transform the problem into an instance of SSC on Z using a standard
conversion: each vertex vi is assigned the integer weight w(vi) = 22i, and edges are weighted with
integer sums. For clarity of exposition, we complete the proof in Zn, but a straightforward analog
of the following proof holds for SSC over Z.

5



Note the reduction takes poly(n) time and space. We prove that the resulting instance of
k(k+1)

2 -SSC is a YES instance if and only if G contains a k-clique.
(⇒) Let H = (VH , EH) be a k-clique of G (with self-loops added). Letting w(VH) denote the set

of weights assigned to the vertices in VH , we have w(VH)+w(VH) ⊆ S and |w(VH)+w(VH)| = k(k+1)
2

by construction.
(⇐) We first prove that our transformation creates a set S whose additive roots contain only

basis vectors.

Claim 1. Let S ⊆ {0, 1, 2}n be a set such that every vector s ∈ S has ℓ1-norm ||s||1 = 2. Then any
set A ⊆ Zn such that A+A ⊆ S contains only elements in {ei}i∈[n].

Proof. Let S ⊆ {0, 1, 2}n be a set of integer vectors of ℓ1-norm 2. Most elements of Zn cannot be
included in a set A satisfying A+A ⊆ S because, when doubled, they create elements that do not
appear in S. We observe that:

1. Any v ∈ A satisfies v ∈ {0, 1}n. (This is because, if an integer vector v ̸∈ {0, 1}n, some
component of v + v falls outside the set {0, 1, 2}, and thus v + v ̸∈ S.)

2. Any v ∈ A satisfies ||v||1 = 1. (Otherwise, ||v + v||1 ̸= 2, and thus v + v ̸∈ S.)

Thus the only elements of Zn that can appear in A are basis vectors.

Let (S, k(k+1)
2 ) be a SSC instance created by transforming an instance G = (V,E) of k-Clique.

By construction, S = w(E) contains two kinds of elements in Zn:

1. Each edge (u, v) ∈ E with u ̸= v creates an element s ∈ S with #0(s) = n− 2 and #1(s) = 2.

2. Each self-loop (v, v) creates an element of s ∈ S with #0(s) = n− 1 and #2(s) = 1.

By Claim 1, any set A with A+A ⊆ S contains only basis vectors. For A containing only basis
vectors, |A+ A| = k(k + 1)/2 if and only if |A| = k because no two pairs of basis vectors have the
same sum. Thus if S is a YES instance of (k(k+1)

2 )-Sumset Containment, S ⊇ A + A for some set
A = {ei1 , . . . , eik}.

Each element of A + A certifies the existence of exactly one edge in G on the vertex set
{i1, i2, . . . , ik}. Thus {i1, i2, . . . , ik} induces a k-clique on G.

We conclude that solutions to the instance of k(k+1)
2 -SSC created by our transformation corre-

spond exactly to solutions of the initial k-Clique instance. As a result, any FPT(or poly(n)-time)
algorithm for k-SSC would imply an FPT(resp. poly(n)-time) algorithm for k-Clique.

Proposition 2. SSC is in W[1].

Proof. To show SSC ∈ W[1], we show that SSC is FPT-reducible to the W[1]-complete problem
Weighted Weft-1 SAT. In Weighted Weft-1 SAT, we are given as input a constant-depth Boolean
circuit of weft 12 and an integer k and accept if and only if the circuit is satisfied by some input of
weight k.

Fix a SSC instance (S, k) and construct the graph

G = (V,E) := (S/2, {(s1, s2) | s1 + s2 ∈ S}).

(We do not include self-edges in G.) This simplified vertex set has more vertices than C0(S), but
eliminates the need to guess a1 and am.

Our Boolean circuit has O(n2) inputs, one for each edge in G. The circuit itself is the logical
AND (∧) of the following clauses:

2That is, there exists at most one gate with unbounded fan-in on any path from an input to the output.
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1. A clause ¬(c1, c2) ∨ ¬(c3, c4) for every pair of edges (c1, c2), (c3, c4) ∈ E satisfying c1 + c2 =
c3 + c4.

2. Clauses ¬(c1, c2) ∨ ¬(c3, c4) if the subgraph induced by the vertex set {c1, c2, c3, c4} is not
complete. (For two adjacent edges, e.g., (c1, c2) and (c2, c3), we check whether the subgraph
induced by {c1, c2, c3} is not complete.)

We observe that this circuit has weft 1 and depth 2.
We claim our circuit has a satisfying assignment of weight exactly k if and only if SSC is a YES

instance. First, suppose our formula has a satisfying assignment of weight exactly k. The satisfying
assignment identifies k edges with distinct colors (certified by Condition 1) such that every endpoint
of the selected edges is connected to every endpoint of every other edge (certified by Condition 2).
That is, the graph induced by the endpoints of the selected edges is a clique, and the endpoints are
an additive root A of S. (Notice that our choice of vertex set implies a+ a ∈ S for every a ∈ A.)

Conversely, if our SSC instance admits a solution A, A induces a clique on G that covers edges
of at least k colors. Selecting any k colors from the edges of the solution clique satisfies our circuit.
Thus an FPT-algorithm for Weighted Weft-1 SAT implies an FPT-algorithm for SSC.

5 Related Problems

Open Problem 1, the question of faster exact algorithms, is our main open question. However, the
algorithmic study of sumsets is still new, and many other interesting open problems exist.

5.1 Sumset Containment on Other Groups

The question of finding contained sumsets applies to groups beyond the integers. We expect the
problem to remain difficult: for example, our NP- and W[1]-completeness proofs can be extended
to Zp and Fn

2 .
However, the additive structure of other groups may affect the problem. For example, over

the Boolean hypercube Fn
2 , it is unclear how to construct a candidate set of cardinality less than

n. Instead, the best natural candidate set may be the input set S itself: this follows from the
observation that over Fn

2 , (A + {v}) + (A + {v}) = A + A for any v ∈ Fn
2 . Thus, taking v to

be any vector in A, we may assume 0 ∈ A without loss of generality. If 0 ∈ A, this implies
A = A + {0} ⊆ A + A ⊂ S. However, because Fn

2 is easily decomposed into subspaces, this could
make the problem more tractable.

Open Problem 2. Design nontrivial exact algorithms for Sumset Containment on Fn
2 .

5.2 Sum and Difference Set Containment

Another natural generalization is the problem of finding other sum and difference sets: given a pair
of integers (r, s), discover whether there exist large sets of the form rA + sB contained in S. The
following problem might be a useful starting point:

Problem 2: Additive Decomposition

Input. A set of integers S = {s1, s2, . . . , sn} and a parameter k < n.
Output. YES if there exist A,B ⊂ Z with |A|, |B| > 1, |A+B| ≥ k, and A+B ⊆ S or ‘NO’
if no solution is possible.
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Every set S is the sum of S + {0}, so we specify |A|, |B| > 1 to avoid the trivial possibility.
We may make the assumption that s1 = a1 = b1 = 0 without loss of generality: an input S has a
solution (A,B) if and only if S − s1 = S − (a1 + b1) has the solution (A− a1, B − b1).

By analogy to Sumset Containment, we can view Additive Decomposition as the problem of
finding a maximal biclique containing at least k colors on a candidate bipartite graph G = (CA ∪
CB, E), where CA and CB represent candidate elements for A and B, respectively. By using the
assumption that 0 ∈ A,B and guessing the element amax = maxa∈A a, we can construct initial
candidate sets of size |CA,0| = |CB,0| ≤ n/2 + 1 by reasoning similarly to Observation 2. We can
then solve the problem in time O∗(2n/2) by enumerating all maximal bicliques [Pri00].

Open Problem 3. Can k-Additive Decomposition be solved in time O∗(2(1/2−ε)n) for some ε > 0?

Acknowledgements. The author thanks Xi Chen, Shivam Nadimpalli and Rocco Servedio for a
series of insightful discussions that informed this note, as well as anonymous reviewers who pointed
out opportunities to clarify the presentation and fix mistakes.
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