
Exact and Parameterized Algorithms
for Subset Sum Problems

Tim Randolph

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2024

cb 2024

Timothy William Randolph

This work is licensed under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Abstract
Exact and Parameterized Algorithms for Subset Sum Problems

Tim Randolph

We present a variety of exact and parameterized algorithms for Subset Sum and other
related problems. The major contributions of this thesis include:

1. Average-case algorithms for Generalized Subset Sum, the problem that generalizes
both Subset Sum and Equal Subset Sum, as well as structural results describing the
parameter regime in which solutions exist. These results extend the application of
the “Representation Method” and are the fastest known in this setting.

2. A proof that Either-Or Subset Sum, the problem of solving either Subset Sum or
Equal Subset Sum, can be solved exponentially faster than time 20.5n in the worst
case. In our view, this result illustrates the potential of the “structure vs.
randomness” approach for Subset Sum.

3. Algorithms that solve worst-case Subset Sum faster than time 20.5n by a polynomial
factor. These improvements on the best known exact algorithms for Subset Sum
represent the successful application of “log shaving” techniques to the problem.

4. Algorithms for Subset Sum and k-SUM with constant doubling. When considered in
terms of a novel parameterization in the doubling constant, Subset Sum admits an
XP-algorithm, while k-SUM is Fixed-Parameter Tractable. We also show that Subset
Sum is FPT in the doubling constant if and only if an instance I of
Hyperplane-Constrained Integer Linear Programming with n variables, m constraints,
and constraint matrix entries bounded by ∆ can be solved in time ∆O(m) · poly(|I|).

Table of Contents

Acknowledgments ix

Source Materials x

1 Introduction 1

1.1 Core Concepts and Techniques . 3

1.1.1 The Meet-in-the-Middle Barrier . 3

1.1.2 The Representation Method . 5

1.1.3 Additive Structure . 8

1.1.4 Lower Bounds . 9

1.2 Prior State of the Art . 10

1.2.1 Generalized Subset Sum and Equal Subset Sum 11

1.3 Contributions of This Thesis . 12

1.3.1 Chapter 3: Average-Case Algorithms for Subset Sum and Equal Subset
Sum . 12

1.3.2 Chapter 4: Complementarity of Subset Sum and Equal Subset Sum . 13

1.3.3 Chapter 5: Log Shaving for Subset Sum 14

i

Tim Randolph Columbia University

1.3.4 Chapter 6: Subset Sum Parameterized in the Doubling Constant . . 14

2 Preliminaries 16

2.1 Notation . 16

2.2 Problem Statements . 22

2.2.1 Generalized Subset Sum . 22

2.2.2 k-SUM . 23

2.2.3 C-Subset Sum and (C, k)-SUM . 23

2.3 Folklore and Utilities . 24

2.3.1 One-Sided Error, Instance Splitting, and Guessing Solution Sizes . . 24

2.3.2 Output-Linear Enumeration of §⃗(Y) 25

2.3.3 Bounds on Solution Size . 27

2.3.4 Bounds on Input Size . 28

2.3.5 Prime Hashing . 30

3 Average-Case Algorithms for Subset Sum and Equal Subset Sum 32

3.1 Summary of Results . 33

3.2 Structural Results . 36

3.2.1 When Solutions Occur in the C = [−d : d] Case 38

3.2.2 When Solutions Occur in the C = [±d] Case 46

3.2.3 Expectation of Z . 51

ii

Tim Randolph Columbia University

3.2.4 Upper Bound on the Second Moment of Z 59

3.3 Algorithmic Results . 76

3.3.1 Reduction to a Narrower Problem . 76

3.3.2 Overview of the GSS Algorithm . 79

3.3.3 Implementation Details and Signature Distribution Lemma 82

3.3.4 Proof of Correctness . 87

3.3.5 Proof of Runtime . 90

3.3.6 Average-Case GSS on Dense Instances: Proof of Theorem 2 94

3.4 Generalized Number Balancing . 95

4 The Complementarity of Subset Sum and Equal Subset Sum: Solving
an "Either-Or" Problem 97

4.1 Structure vs. Randomness and Subset Sum 98

4.2 Summary of Results . 99

4.2.1 Solving EOSS Using Techniques From [AKKN16] 101

4.3 Easy ESS Instances . 101

4.4 Subset Sum Instances Which Are Easy ESS Instances 102

4.5 Proof of Theorem 6: The Algorithm for EOSS 105

5 Beyond the Meet-in-the-Middle Barrier: Log Shaving for Subset Sum 109

5.1 Circuit RAM and Word RAM . 110

5.2 Summary of Results . 111

iii

Tim Randolph Columbia University

5.3 Ω(n0.5/ log n)-Factor Speedup via Bit Packing 113

5.3.1 Adapting Algorithm 5.1 to Word RAM 117

5.4 Ω(n0.01)-Factor Speedup via Orthogonal Vectors and the Representation Method118

5.4.1 Definitions and Notation . 119

5.4.2 Proof of Theorem 11 . 119

5.4.3 Auxiliary Lemmas . 125

5.4.4 Adapting Algorithm 5.2 to Word RAM 128

5.5 Subset Sum in Time O(2n/2 · n−0.5023) . 128

5.5.1 Auxiliary Lemmas . 139

5.5.2 Adapting Algorithm 5.5 to Word RAM 146

6 Subset Sum Parameterized in the Doubling Constant 148

6.1 Summary of Results . 150

6.2 Freiman’s Theorem Made Constructive . 152

6.2.1 Ruzsa’s Modeling Lemma . 153

6.2.2 Bogolyubov’s Lemma in Z/mZ . 154

6.2.3 Finding a GAP in a Bohr Set . 155

6.2.4 Ruzsa’s Covering Lemma . 156

6.2.5 Proof of Theorem 15: The Constructive Freiman’s Theorem 156

6.2.6 Bounding GAP Coefficients . 157

6.3 Integer Programming with Constant Doubling 158

iv

Tim Randolph Columbia University

6.3.1 C-Binary ILP Feasibility . 159

6.3.2 C-Bounded ILP Feasibility . 160

6.4 Subset Sum with Constant Doubling . 160

6.4.1 Reduction from C-Subset Sum to Hyperplane-Constrained Binary ILP
Feasibility . 161

6.4.2 Equivalence Between HBILP Feasibility and Subset Sum 162

6.4.3 Non-negativity for HBILP Feasibility 165

6.5 Unbounded Subset Sum with Constant Doubling 168

6.6 k-SUM with Constant Doubling . 170

7 Future Work 172

7.1 The Meet-in-the-Middle Barrier, Reconsidered 172

7.1.1 Unbalanced Subset Sum Instances 173

7.1.2 Random-Like Instances. 173

7.1.3 Structured Instances . 174

7.2 Open Questions from This Thesis . 176

References 177

A Appendix to Chapter 2 185

A.1 Reduction of Multilist k-SUM to Single-List k-SUM 185

A.2 Reduction of Multiset k-SUM to k-SUM . 186

v

List of Figures

1.1 The Meet-in-the-Middle algorithm . 4

1.2 Cartoon of partial candidate solutions . 5

1.3 Cartoon of filtering partial candidate solutions 6

1.4 Cartoon of comparing partial candidate solutions 7

1.5 Cartoon of a set with additive structure . 9

2.1 Efficiently enumerating §⃗(Y) given the (multi)set Y 25

3.1 Plot of Λ . 35

3.2 Growth of §(x⃗[ℓ]) when sparse . 37

3.3 Growth of §(x⃗[ℓ]) when dense . 38

3.4 Example plots of f and g . 49

3.5 Illustration of (3.78) . 66

3.6 Cartoon of |G(θ1, θ2)|n in one dimension . 68

3.7 Illustration of Rc1,c2 . 69

3.8 Visual aid for the proof of Claim 10 . 74

vi

Tim Randolph Columbia University

3.9 Outline of the GSS algorithm . 83

4.1 Plot of g(|S|/n, β) for β ≈ 0.139 . 104

4.2 The EitherOrSubsetSum algorithm . 105

5.1 The Bit-Packing algorithm . 114

5.2 The RepresentationOV algorithm . 121

5.3 The Residue-Couple-List subroutine . 127

5.4 Plot of α∗(ρ), γ∗(ρ), β(ρ), ε′
1(ρ) in the density range 1

2−H(1/4) < ρ ≤ 1 + Θ(1
log n

)140

5.5 The Sample-Packing subroutine . 144

5.6 The Sample-Searching subroutine . 145

vii

List of Tables

1.1 Worst-case algorithms for Subset Sum. 10

1.2 Average-case algorithms for Subset Sum. 11

1.3 Worst-case Algorithms for Generalized Subset Sum. 12

1.4 Average-case Algorithms for Generalized Subset Sum. 13

1.5 Worst-Case Algorithms for C-Subset Sum. 15

1.6 Worst-Case Algorithms for (C, k)-SUM. 15

3.1 Runtime of the GSS algorithm . 35

viii

Tim Randolph Columbia University

Acknowledgements
First and foremost, I owe an enormous thanks to my advisors, Xi Chen and Rocco

Servedio, who have served as my primary academic mentors for the past six years. This
thesis would not have been possible without their unwavering support and optimism.

Yaonan Jin and Karol Węgrzycki contributed directly to several of the works on which this
thesis is built, and have been excellent collaborators. Josh Alman, Karl Bringmann, and
Jesper Nederlof generously volunteered their time to serve on my thesis committee. My
other academic mentors, including Nick Arnosti, Adam Cannon, Pamela Harris, and Bill

Lenhart, have all helped to make this work possible.

My family and my friends in academia have provided a different kind of invaluable support.
Mom, dad, and John; Clayton and Shivam, and many others, I owe you my sincere thanks.
Finally, I’m grateful to Katie and Kona, whose faith in my ability to finish this thesis has

never wavered.

ix

Tim Randolph Columbia University

Source Materials

Material in this thesis has been adapted from the following previous works:

• Chapter 3. Xi Chen, Yaonan Jin, Tim Randolph, and Rocco Servedio. "Average-Case
Subset Balancing Problems." SODA 2022.

• Chapter 4. Tim Randolph. "A Hybrid Algorithm for Subset Sum and Equal Subset
Sum." Preprint, 2023.

• Chapter 5. Xi Chen, Yaonan Jin, Tim Randolph, and Rocco Servedio. "Subset Sum
in time 2n/2/poly(n)." RANDOM/APPROX, 2023.

• Chapter 6. Tim Randolph and Karol Węgrzycki. "Parameterized Algorithms on
Integer Sets with Small Doubling: Integer Programming, Subset Sum and k-SUM."
Preprint, 2024.

x

Chapter 1

Introduction

Subset Sum is a difficult algorithmic problem with a distinguished history. As 0-1 Knap-
sack, it made Karp’s list of 21 original NP-complete problems [Kar72]; it served as one of
the earliest applications for exact exponential and pseudopolynomial algorithms based on
dynamic programming [HS74]; and it continues to inspire interest among cryptographers,
complexity theorists and mathematicians today. Moreover, even among the many classic
algorithmic problems, Subset Sum occupies a special position. Along with its very close
relations, such as Partition and Knapsack, Subset Sum asks one of the most fundamental
questions about a set of numbers. This becomes apparent when one considers the many
equivalent “interpretations” of the Subset Sum problem:

1. Consider an integer set and a target integer t. Does any subset of the set add up to t?

2. Consider a set of items, each of which has a certain weight and a certain value. Does
there exist any collection of items that exceeds a certain value threshold while remaining
within a certain weight limit?

3. Consider an abelian group operation (for example, addition over the integers) that
maps subsets of a group back to group elements. Which elements appear in the image
of this function?

4. Consider a Binary Integer Linear Program specified by a constraint matrix A ∈ Z1×n

and a target b. Does there exist a feasible solution x ∈ {0, 1}n satisfying Ax⃗ = b?

The many interpretations of Subset Sum motivate extensions, including settings in which
conditions are imposed on the input (randomness, additive structure, or bounded size),
modifications of the domain (vectors, reals, or group elements), and modifications of the
coefficient set (allowing elements to be used two, three, or an arbitrary number of times;
subtracted, etc.) Different communities of researchers study the algorithmic problem from
different angles, producing parallel and sometimes complementary literatures on heuristic,

1

Tim Randolph Columbia University

cryptographic, exact and parameterized algorithms for the problem. This thesis focuses
primarily on exact algorithms, as well as algorithms parameterized in the solution size and
the amount of additive structure in the input.1

Applications may already provide sufficient reason to study Subset Sum. However, the
problem also provides connections to additive combinatorics, phase transitions in the be-
havior of random sets, information theory, and fine-grained and parameterized complexity,
as well as opportunities for delicate algorithm design. This thesis presents a collection of
original results and situates them in the larger context of the landscape of difficulties and
opportunities surrounding Subset Sum.

The question of whether Subset Sum can be solved in time O∗(2(0.5−ε)n)2 for some con-
stant ε > 0 is one of the major questions in exact algorithms (see explicit mentions in
[Woe08, CFJ+14, AKKN15, AKKN16, NW21], among others). Despite many attempts,
Horowitz and Sahni’s classic O∗(20.5n)-time Meet-in-the-Middle algorithm remains the fastest
worst-case algorithm3 even as the current year marks the 50th anniversary of its original pub-
lication [HS74].4 However, this apparent difficulty has not discouraged work on the Subset
Sum problem. Instead, the stubbornness of the “Meet-in-the-Middle barrier” has fueled work
on variants and related settings. An early improvement occurred in 1981, when Schroep-
pel and Shamir improved the space requirement of O∗(2n/2) to O∗(2n/4) while retaining the
O∗(2n/2) runtime [SS81]. An exciting recent result by Nederlof and Węgrzycki further im-
proved the time-space tradeoff for the problem, in particular presenting an O(2n/2)-time
algorithm that runs in space O(20.249999n) [NW21]. Breaking the Meet-in-the-Middle Bar-
rier remains a tantalizing direction for future research. A complementary goal would be
that of establishing lower bounds for exact algorithms: currently, no 2Ω(n) lower bound is
known, even conditioning on strong complexity-theoretic assumptions such as the Strong
Exponential Time Hypothesis (SETH).

Another tool relevant for this thesis emerged in 2010, when Howgrave-Graham and Joux
made a significant breakthrough by showing that Subset Sum could be solved in time
O∗(20.337n) in the average case, under a reasonable heuristic assumption [HGJ10].5 Sub-

1One flourishing line of research that we do not consider is that of pseudopolynomial algorithms for
Subset Sum; that is, algorithms parameterized in the size of the target or largest input. Recent progress
on algorithms for this problem includes improvements by Bringmann and Koiliaris and Xu [Bri17, KX19] as
well as results parameterized in the size of the largest input element [PRW21, BW21, CLMZ24]. A recent
breakthrough by Abboud, Bringmann, Hermelin and Shabtay showed SETH-based lower bounds for this
problem, and the introduction to their paper also serves as a good starting point for the exploration of
related research [ABHS22].

2We use O∗(·) notation to suppress poly(n) factors.
3At least, up to exponential factors: for subexponential improvements, see Chapter 5 of this thesis.
4See Section 1.1.1 for a modern presentation of Horowitz and Sahni’s algorithm, as well as an overview

of the Meet-in-the-Middle barrier.
5Although the original paper claims a running time of O∗(20.311n), a correction of the original analysis

2

Tim Randolph Columbia University

sequent works, including [BCJ11, BBSS20, CJRS22], refined what became known as the
Representation Method,6 and whittled the average-case exponent down to O∗(20.283n). The
following decade witnessed a flurry of results in related settings, including better time-space
tradeoffs [DDKS12, AKKM13, NW21], a faster polynomial-space algorithm [BGNV18], and
fast algorithms for large classes of sufficiently “random-like” instances [AKKN15, AKKN16].
Because this thesis adapts the Representation Method to several different purposes, we pro-
vide an introduction to the approach in Section 1.1.2. Speaking broadly, those instances of
Subset Sum on which the Representation Method fails appear to have highly unusual (that
is, “non-random”) additive structure. The extent to which “structure” and “randomness”
can be exploited to design faster algorithms for Subset Sum problems remains to be fully
determined.

In 2019, Mucha, Nederlof, Pawlewicz and Węgrzycki used the Representation Method
to establish an O∗(30.488n)-time worst-case algorithm for Equal Subset Sum, the Subset Sum
variant that asks for two different input subsets with the same sum [MNPW19]. This resolved
an open question of Woeginger, who observed that the Meet-in-the-Middle approach to Equal
Subset Sum runs in time O∗(30.5n) and asked whether this was a barrier for Equal Subset
Sum analogous to the O∗(20.5n) runtime barrier for Subset Sum [Woe08]. This result also
raises a natural follow-up question: if Subset Sum and Equal Subset Sum are viewed as
the problems of achieving a target sum by assigning coefficients in {0, 1} and {−1, 0, 1},
respectively, to the input set, what is the best possible runtime for other coefficient sets?
Does the Meet-in-the-Middle barrier generalize?

1.1 Core Concepts and Techniques
Before proceeding to more precise summaries of the state of the art for Subset Sum problems
and the contributions of this thesis, we introduce several “big concepts” that shape the
thinking of researchers working on Subset Sum and related problems. These include long-
standing barriers, such as the O∗(2n/2) runtime of Meet-in-the-Middle, and useful high-
level techniques, such as the Representation Method. Collectively, these concepts shape
the common wisdom regarding which problems are likely to be tractable, informative, and
otherwise deserving of further study.

1.1.1 The Meet-in-the-Middle Barrier
The classic Meet-in-the-Middle algorithm was introduced by Horowitz and Sahni in 1974
[HS74], and will serve as a baseline for comparison throughout this thesis. Simply put, the

gives this O∗(20.337n) runtime; see [BCJ11, Section 2.2] for details. Other difficulties with the original
analysis have since been ironed out.

6See Section 1.1.2 for a full introduction to the Representation Method.

3

Tim Randolph Columbia University

Procedure MeetInTheMiddle(X, t)

Input: An integer multiset X = {x1, x2, . . . , xn} and an integer target t.

0. Fix a partition X = A ⊔B such that |A| = |B| = n/2.

1. Enumerate §⃗(A) and §⃗(B).

2. Initialize two pointers at the smallest value in §⃗(A) and the largest value in §⃗(B).
Until a solution is found or either pointer reaches the end of its list:

(a) If these two values sum to the target t, return the associated solution;
(b) if they sum to less than t, increment the pointer to §⃗(A) (so that it points to

a larger element);
(c) and if they sum to more than t, increment the pointer into §⃗(B) (so that it

points to a smaller element).

If the loop terminates without returning a solution, return ‘No’.

Figure 1.1: The classic Meet-in-the-Middle algorithm, adapted from [HS74].

algorithm divides the input into two halves A and B, enumerates §⃗(A) and §⃗(B),7 and for
each a ∈ §⃗(A) searches §⃗(B) for t− a (Algorithm 1.1).

A careful implementation of the Meet-in-the-Middle algorithm runs in time O(2n/2),
without hidden polynomial factors: the sorted lists in Step 1 can be enumerated in output-
linear time (Section 2.3.2), and Step 2 also runs in linear time.8

Correctness of Algorithm 1.1 follows from the observation that if for some a ∈ §⃗(A) there
exists b ∈ §⃗(B) with a + b = t, we cannot possibly increment our increasing pointer past
a: this would require reaching an element b′ ∈ §⃗(B) such that a + b′ < t, which would be
impossible without first seeing b. By symmetry, we cannot increment past b without first
seeing a. Thus the algorithm must discover the solution a + b (unless another solution is
discovered first).

Improving on Meet-in-the-Middle is a major open problem in exact algorithms. Among
7§(A), using the double-S symbol §, is our special notation for the set of subset sums {

∑
y∈Y y | Y ⊆ A};

§⃗(A) indicates the sorted list containing the subset sums of A. See Section 2.1.
8An even simpler variant of the algorithm replaces Step 2 with 2n/2 binary searches of §⃗(B), one for each

element of §⃗(A). This increases the runtime by a factor of O(n) for the binary search.

4

Tim Randolph Columbia University

the results in this thesis are small poly(n)-factor improvements on Meet-in-the-Middle, the
first improvements in 50 years (Chapter 5). However, there remains no known worst-case
algorithm that runs in time O(2(0.5−ε)n) for any constant ε > 0.

The existence of the Meet-in-the-Middle barrier has spurred progress on variant settings
and related problems. In [HGJ10], Howgrave-Graham and Joux gave an algorithm that
solves average-case Subset Sum instances in time O(20.337n), which was later improved upon
by Becker, Coron, and Joux and subsequently by Bonnetain, Bricout, Schrottenloher, and
Shen [BCJ11, BBSS20]. These works pioneered the Representation Method, which continues
to prove fruitful and is explained in the next section.

1.1.2 The Representation Method
The Representation Method is a three-step process that makes it possible to break the Meet-
in-the-Middle barrier for Subset Sum when certain conditions on the input are satisfied.
Among the contributions of this thesis is the refinement and generalization of this approach
(c.f. algorithms in Chapter 3, Chapter 4 and Chapter 5).

In a nutshell, the technique works as follows:

X

S

Figure 1.2: Partial candidate solutions (red) are sampled uniformly from the input set X
and overlap with an unknown solution S (blue) to different extents.

1. Given a Subset Sum input, construct exponentially many partial candidate solutions,
that is, create a search space of input subsets or other objects in which each element

5

Tim Randolph Columbia University

constitutes a guess at a partial solution. In [HGJ10], partial solutions are subsets of
the input of size approximately n/4, corresponding to an expected solution size of
n/2. The algorithm’s job is now to recover two partial candidate solutions that make
a complete, correct solution.

r (mod p) t− r (mod p)
Figure 1.3: Partial candidate solutions (red circles) are sorted by residue class modulo a
large random prime p. For any fixed solution S satisfying Σ(S) = t, if a partial solution
P ⊆ S (left blue circle) falls into r (mod p), then S \ P (right blue circle) falls into (t− r)
(mod p).

2. To speed up solution recovery, the algorithm employs a filtering process. There are
many ways to divide a solution in half, and thus every solution will have many repre-
sentations as a solution pair of partial candidate solutions.
The goal is now to throw out many partial candidate solutions while retaining at
least one representation of the solution with high probability. Typically, this is done
by hashing the partial candidate solutions into residue classes modulo a large prime.
Conveniently, this preserves the two halves of corresponding solution pairs. For exam-
ple, in [HGJ10], partial candidate solutions are hashed by their sum into residue classes
modulo a large random prime p. The algorithm then discards most partial candidate
solutions, keeping only those that fall into the residue classes r and t− r (mod p) for
a certain residue r. This ensures that if one half of a solution pair falls into residue
class r, we retain the other half, which falls into residue class t− r.

3. Finally, we search for a solution by comparing partial candidate solutions in the selected
residue classes. This step typically uses a Meet-in-the-Middle approach.

The key observation of [HGJ10] is that any Subset Sum solution of size n/2 can be
decomposed into Ω∗(20.5n) solution pairs, each consisting of two disjoint sets of size n/4.

6

Tim Randolph Columbia University

✓

r

r + p

r + 2p

r + 3p

r + 4p

r + 5p

r + 6p

r + 7p

Figure 1.4: Comparing partial candidate solutions in the residue class r (mod p) using Meet-
in-the-Middle. Note that multiple partial candidate solutions (red circles) may correspond
to the same value. To recover a solution, the algorithm must find a pair of partial solutions
that sum to t and are disjoint (blue circles).

Since there are (
n

n/4

)
= Θ∗

(
2H(1/4)n

)
= O

(
20.8113n

)
input subsets of size n/4 by Stirling’s Approximation (2.3), hashing over a prime of size
O∗(20.5n) produces residue classes containing 2H(1/4)n−0.5n ≈ 20.3113n partial candidate solu-
tions in expectation.

However, several conditions must be met before the Representation Method works. The
following three issues are particularly salient:

1. The algorithm must obtain the subset of partial candidate solutions that fall into a
certain residue class without enumerating all O(20.811n) partial candidate solutions.

2. Partial candidate solutions must distribute well over residue classes: for our algorithm
to work, our chosen residue classes must contain at least one solution pair and not too
many partial candidate solutions in total.

3. Finally, complications may arise during solution recovery. For example, in [HGJ10],
the algorithm must ignore pairs of partial candidate solutions that add to the target
but are not disjoint (pseudosolutions). If there are too many pseudosolutions, this
causes a slowdown in the recovery step: if many pseudosolutions in the r and t − r
residue classes have exactly the same sum, they must all be compared to each other,
eliminating the speed-up from Meet-in-the-Middle.

7

Tim Randolph Columbia University

To resolve issue (1), enumerating a subset of partial candidate solutions can typically
be accomplished via dynamic programming. With high probability over uniformly random
input, solutions distribute well and few pseudosolutions appear, so issues (2) and (3) are
not a problem in this case. Indeed, the technique can be adapted to Equal Subset Sum and
Generalized Subset Sum by generalizing partial candidate solutions from subsets of size n/4
to coefficient-weighted partial solutions organized by “assignment profile” (see Chapter 3).
Moreover, the approach can be adapted to worst-case settings, as long as the issues described
above can be resolved by other means. Chapter 4 and Chapter 5 illustrate two adaptations
of the Representation Method to worst-case input settings.

1.1.3 Additive Structure
Given an integer set A, what do its sumset

A+ A = {a1 + a2 | a1, a2 ∈ A},

its iterated sumset
sA = A+ A+ · · ·+ A︸ ︷︷ ︸

s

,

and its set of subset sums
§(A) = {Σ(T) | T ⊆ S}

look like? Roughly, if the answer is “like a generalized arithmetic progression” (see below),
we say that the set is additively structured, and if the answer is “like a random set”, we
say that the set lacks additive structure. These two informal descriptions correspond to two
ends of a continuum stretching from, for example:

• A has constant doubling (|A+ A| ≤ C|A| for a constant C),

• sA is at most a constant times |A|,

• A (and A+A, sA, and §(A)) can be contained in a generalized arithmetic progression
of dimension OC(1) and volume OC(|A|), and

• other equivalent statements, for example, in terms of Ruzsa distance and approximate
groups (see, e.g., [TV06] Proposition 2.26),

at the structured extreme all the way to

• A has linear doubling (|A+ A| ≥ c |A|2
2 for some constant c),

• sA ≥ c
(

|A|
s

)
,

8

Tim Randolph Columbia University

• and §(A) ≥ c2|A|

at the random extreme.

Z

Figure 1.5: A set with additive structure (red set) is contained in a compact Generalized
Arithmetic Progression (GAP). A GAP can be thought of as the projection of a multi-
dimensional arithmetic progression (dotted grid) onto the line. Note that multiple sets of
“GAP coordinates” may correspond to a single integer.

This way of thinking about sets is commonplace in additive combinatorics, but until
recently has seen few applications to the Subset Sum problem.9 In Chapter 6, we consider
Subset Sum problems parameterized in the doubling constant. We use this parameterization
to prove, roughly speaking, that if the input set X has strong additive structure, we can
more efficiently solve Subset Sum problems.

1.1.4 Lower Bounds
Conditional lower bounds for Subset Sum problems are few. However, there are several
which provide fundamental limitations on what we should expect to achieve.

ETH-hardness

The popular Exponential Time Hypothesis (ETH), due to Impagliazzo and Paturi, is the
assumption that 3-SAT cannot be solved in time 2o(n) [IP01]; under this hypothesis, Subset

9Early algorithms for dense subset sum due to Chaimovich, Freiman, and Galil, and Galil and Margalit,
are an exception [CFG89, GM91], and have influenced recent work on the problem [BW21, Bri23].

9

Tim Randolph Columbia University

Sum cannot be solved in time 2o(n). Because the doubling constant has size O(n) for all sets,
the ETH further implies the nonexistence of a 2o(C) · nO(C/ log(C))-time algorithm for C-Subset
Sum.

SETH-hardness

The Strong Exponential Time Hypothesis extends the ETH to the statement that k-SAT
cannot be solved in time O(2(1−ε)n) for any ε > 0 independent of k [CIP09]. Although
assuming SETH is not known to imply stronger lower bounds than 2o(n), a recent break-
through work by Abboud, Bringmann, Hermelin, and Shabtay produced lower bounds on
pseudopolynomial algorithms for this problem. They prove that, under SETH, for any con-
stant ε > 0 there exists δ > 0 such that Subset Sum cannot be solved in time O(t1−ε2δn),
and k-SUM cannot be solved in time O(t1−εnδk) ([ABHS22] Theorem 1.1).

3-SUM and k-SUM Conjectures

3-SUM is easily solved in time O(n2), but conjecture once held that o(n2)-time algorithms for
this problem were impossible. Increased interest in this conjecture was ignited by Gajentaan
and Overmars, who in 1993 showed that many problems in computational geometry require
algorithms with asymptotic runtimes at least as large as 3-SUM [GO95]. In 2014, Grønlund
and Pettie solved 3-SUM in time O(n2/(log n

log log n
)2/3), disproving the original conjecture and

leading to a series of improvements by polylog(n) factors [GP18, GS15, Fre17, Cha19]. The
current conjecture is that 3-SUM cannot be solved in time n2−ε for any constant ε > 0. The
stronger k-SUM conjecture hypothesizes that k-SUM cannot be solved in time n⌈k/2⌉−ε for
any constant ε > 0.

1.2 Prior State of the Art

Work Time Space
[HS74] O∗(20.5n) O∗(20.5n)
[SS81] O∗(20.5n) O∗(20.25n)

[BGNV18] O(20.860n) poly(n)
[NW21] O∗(2n/2) O∗(20.249999n)

Table 1.1: Worst-case algorithms for Subset Sum.

Setting pseudopolynomial and parameterized algorithms aside, worst-case Subset Sum
saw few improvements in the 40 years following Horowitz and Sahni’s development of the

10

Tim Randolph Columbia University

Meet-in-the-Middle algorithm. However, the last decade has seen a several exciting results
for the problem. In 2018, Bansal, Garg, Nederlof, and Vyas resolved a longstanding open
problem by designing the first O∗(2(1−ε)n)-time, polynomial space algorithm for the problem.
In 2021, Nederlof and Węgrzycki broke the “Schroppel-Shamir Space Barrier” by develop-
ing faster algorithms for the Orthogonal Vectors problem on d-dimensional binary vectors
with support d/4. The looming challenge remains to break the Meet-in-the-Middle barrier,
but faster polynomial-space algorithms and O(2n/2)-time algorithms with improved space
complexity both have the potential to yield insight into the problem.

Work Time Space
[HS74] O∗(20.5n)† O∗(20.5n)

[HGJ10] O∗(20.337n) O∗(20.337n)
[BCJ11] O∗(20.291n) O∗(20.291n)

[BBSS20] O∗(20.283n) O∗(20.283n)
† Worst-case runtime.

Table 1.2: Average-case algorithms for Subset Sum.

The timeline of average-case algorithms for Subset Sum is more straightforward. After
Howgrave-Graham and Joux inaugurated the Representation Method in 2010, follow-up
works by Becker, Coron and Joux and by Bonnetain, Bricout, Schrottenloher, and Shen
improved the exponent by designing approaches that generalized the notion of a partial
solution. All three algorithms consider the “cryptographic” or “hidden solution” variant of
average-case Subset Sum, in which the solution is fixed by selecting and adding together a
random subset of the input.

1.2.1 Generalized Subset Sum and Equal Subset Sum
The Generalized Subset Sum problem, defined formally below (Section 2.2.1), asks the follow-
ing: given an input vector x⃗ = (x1, x2, . . . , xn) and a target t, does there exist a coefficient
vector c⃗ ∈ Cn such that x⃗ · c⃗ = t? If C = {0, 1}, GSS reduces to Subset Sum, while if
C = {−1, 0, 1} and t = 0, GSS is equivalent to Equal Subset Sum, the problem of finding
two subsets of the input with the same sum.

Extending Meet-in-the-Middle in the natural way results in algorithms for GSS that run
in time O∗(|C|0.5n) for any fixed coefficient set C. However, the Meet-in-the-Middle barrier
does not appear to generalize robustly to larger coefficient sets. This was discovered by
Mucha, Nederlof, Pawlewicz and Węgrzycki, who introduced a faster algorithm for worst-
case Equal Subset Sum in 2019 [MNPW19].

11

Tim Randolph Columbia University

Work C = [−1 : 1] (ESS) C = [±2] C = [±d] C = [−d : d]
Meet-in-the-Middle O∗(3n/2) = O∗(1.733n) O∗(40.5n) O∗(|C|0.5n) O∗(|C|0.5n)

[MNPW19] O∗(30.488n) = O∗(1.709n)

Table 1.3: Worst-case Algorithms for Generalized Subset Sum.

1.3 Contributions of This Thesis
The following section contextualizes the results of this thesis, chapter by chapter.

1.3.1 Chapter 3: Average-Case Algorithms for Subset Sum and
Equal Subset Sum

Chapter 3 sets the stage for the rest of the thesis by introducing the Generalized Subset Sum
problem and building intuition about the properties of “average” Subset Sum instances. The
main message of the section is that, at least in the average case, all subset balancing problems
share a common structure.

We begin by addressing a natural question:

Question 1. When is an instance of GSS with elements sampled uniformly at random likely
to have a solution?

The answer depends on the size of the range from which inputs are sampled (parame-
terized by the range bound x̂), the target t, and the coefficient set C. The answer, in the
natural case in which C is symmetric about 0 and t is not too large, turns out to be, very
roughly, “when x̂ is less than |C|n”. Although this answer is intuitive, it is surprisingly dif-
ficult to obtain: Borgs, Chayes, and Pittel provide good bounds on the phase transition in
the C = {0, 1} case [BCP01], but their argument is somewhat involved and becomes more
so when generalized to larger C (see Section 3.2.2 and the following two subsections).

In Theorems 3 and 4, we answer Question 1 by bounding the ranges in which average-
case GSS is likely and unlikely to yield solutions for coefficient sets of the form [−d : d] and
[±d] (that is, {−d, ...,−1, 0, 1, ..., d} and {−d, ...,−1, 1, ..., d}, respectively), as well as scale
multiples and translations of these sets. For C = [±d], we generalize the methods of [BCP01].
However when C = [−d : d], we present a novel approach that uses more elementary tools,
results in stronger probability guarantees, and aligns well with combinatorial intuitions about
the problem (Section 3.2).

After establishing the parameter regimes in which average-case GSS is likely and unlikely
to have solutions, we leverage our structural results to develop a suite of algorithms for

12

Tim Randolph Columbia University

average-case balancing problems. These generalize the Representation Method and break
the Meet-in-the-Middle barrier for GSS in the average case. Our results are summarized in
the table below, listed with previous worst-case results for comparison. In the general case in
which C = [±d] or [−d : d], our algorithm runs in time O∗(|C|Λ(|C|)n) = O∗(|C|(0.5−Ω(1/|C|))n),
where Λ denotes the function

Λ(z) := max
1− z+1

2z
logz(z + 1) + 1

z
logz(2)

2
3 −

z+1
3z

logz

(
z+1

2

) (1.1)

(plotted in Figure 3.1).

Work C = [−1 : 1] (ESS) C = [±2] C = [±d], [−d : d]
Meet-in-the-Middle† O∗(3n/2) = O∗(1.733n) O∗(40.5n) O∗(|C|0.5n)

[MNPW19]† O∗(30.488n) = O∗(1.709n)
[CJRS22] O∗(30.387n) = O∗(1.530n) O∗(40.400n) O∗(|C|Λ(|C|))

†Worst-case runtime.

Table 1.4: Average-case Algorithms for Generalized Subset Sum.

1.3.2 Chapter 4: Complementarity of Subset Sum and Equal Sub-
set Sum

Chapter 4 presents a standalone result that highlights a complementarity between the hard
instances of Subset Sum and the hard instances of Equal Subset Sum. Suppose that we relax
the requirements of Generalized Subset Sum by allowing ourselves to solve a GSS instance
(X, t) on at least one of the coefficient sets {0, 1} (Subset Sum) or {−1, 0, 1} (Equal Subset
Sum). (We allow our algorithm to return negative results, for example “No, there is no
Subset Sum solution.”)

Perhaps surprisingly, for this “Either-Or Subset Sum” problem, the Representation Method
can be adapted to the worst-case. The result is a worst-case algorithm that solves Either-Or
Subset Sum in time O(2(0.5−ε)n) for ε > 0.03, exponentially faster than the best worst-case
algorithm for Subset Sum or ESS.

We can view this result as proof that the instances on which the Representation Method
fails to solve Subset Sum in time faster than Meet-in-the-Middle all have certain properties
that allow us to quickly solve Equal Subset Sum. (Specifically, we show that these instances
either have small Equal Subset Sum solutions or generate an Equal Subset Sum solution
naturally in the course of running a Representation Method algorithm.) If we persist in

13

Tim Randolph Columbia University

thinking of the Representation Method as an algorithm that works well on “random-like”
instances of Subset Sum, then EOSS algorithms that run in time O∗(2(0.5−ε)n) serve as proof
that the “structure” that defeats the Representation Method is concretely useful in solving
a closely related Subset Sum problem.

1.3.3 Chapter 5: Log Shaving for Subset Sum
The original 3-SUM conjecture speculated that 3-SUM could not be solved in time o(n2).
Algorithms running in time O(n2/polylog(n)) eventually disproved this first statement of the
conjecture, reducing it to the supposition that 3-SUM cannot be solved in time O(n2−ε) for
any constant ε > 0. This is perhaps the most famous example of the strategy of chipping
away at algorithmic barriers by reducing runtimes by polylog factors, otherwise known as
“log shaving.”

Chapter 5 considers the following question:

Question 2. Can Subset Sum be solved in time o(2n/2)?

Note that an o(2n/2)-time algorithm for Subset Sum is not necessarily a O(2(1/2−ε)n)
algorithm for any constant ε > 0, in the same way that an o(n2) algorithm for 3-SUM is
not necessarily an O(n2−ε)-time algorithm. We further note that the analogy between the
two cases is imperfect: while there is evidence that an O(n2−ε)-time algorithm for 3-SUM
is unlikely, both in the form of lower bounds in restricted models of computation [KLM19]
and because it would imply surprising improvements for many other “3-SUM equivalent”
problems, there is no strong evidence that an O(2(1/2−ε)n)-time algorithm for Subset Sum is
impossible.

However, although we might expect eventually to see exponential improvements on Meet-
in-the-Middle, the current year (2024) marks the 50th anniversary of Horowitz and Sahni’s
original publication with no such progress [HS74]. As such, in Chapter 5 we treat the Meet-
in-the-Middle barrier with the dignity of a fine-grained complexity hypothesis and answer
Question 2 in the affirmative. Specifically, we design several algorithms which solve the
Subset Sum problem in time 2n/2/poly(n) in the worst case. The first of the three algorithms
we present solves Subset Sum in time Õ(2n/2/

√
n) by adapting existing bit-packing strategies,

while our final algorithm incorporates problem-specific improvements to improve the runtime
beyond this point.

1.3.4 Chapter 6: Subset Sum Parameterized in the Doubling Con-
stant

The doubling constant, defined for an integer set A as the smallest value C such that |A+A| ≤
C|A|, is a parameter commonly used in additive combinatorics to capture the amount of

14

Tim Randolph Columbia University

additive structure of an integer set. A small doubling constant is evidence of a set with
significant additive structure, and sets with small constant doubling approximate generalized
arithmetic progressions (see Section 1.1.3). This prompts a natural question:

Question 3. Can Subset Sum instances with small doubling constant be solved quickly
(specifically, faster than trivial bounds on the search space would suggest?) Is Subset Sum
fixed-parameter tractable (FPT) in the doubling constant?

We address this question by proving that Freiman’s theorem is fixed-parameter tractable
(FPT) in the doubling constant, which implies that we can efficiently construct a small gener-
alized arithmetic progression that contains any Subset Sum instance with constant doubling.
We then use our constructive Freiman’s theorem to demonstrate that the complexity of Sub-
set Sum, parameterized in the doubling constant, is closely related to the complexity of
integer programming: specifically, Subset Sum is FPT in the doubling constant if and only
if the feasibility of a Hyperplane-Constrained Binary Integer Program can be tested in time
∆O(m) · poly(n), where ∆ denotes a bound on the size of the largest entry of the constraint
matrix, m is the number of constraints, and n is the number of variables.

Work Time
[RW23] OC(nf(C))

Table 1.5: Worst-Case Algorithms for C-Subset Sum.

Work Time
Meet-in-the-Middle Ok(n⌈k/2⌉)

[RW23] OC,k(n log n)

Table 1.6: Worst-Case Algorithms for (C, k)-SUM.

We also establish positive results for Subset Sum and k-SUM parameterized in the dou-
bling constant, summarized in Tables 1.5 and 1.6. Both algorithms are themselves straight-
forward, but the results reinforce the conclusion that Subset Sum is a much more tractable
problem when the doubling constant is used as a parameter. Compare the OC(nf(C))-time
algorithm for C-Subset Sum and the OC,k(n log n)-time algorithm for (C, k)-Subset Sum to
the fastest known algorithms for (unparameterized) Subset Sum and for k-SUM. The first
is an XP-algorithm with respect to C, as compared to an XP-algorithm with respect to k
(k-SUM) or an exponential-time algorithm when unparameterized; the second is a FPT al-
gorithm (in fact, almost Fixed-Parameter Linear) with respect to k and C, as opposed to an
XP-algorithm with respect to k.

15

Chapter 2

Preliminaries

This chapter organizes the background information required for this thesis. Experienced
readers may wish to skim the section on notation and use the remaining sections for reference
as they become necessary.

The chapter contains the following subsections:

• Notation. Mathematical shorthand and notation. Most is standard but the double-S
(§) notation used specifically for subset sums is specific to this work.

• Problem Statements. Formal statements of the algorithmic problems we consider
most frequently. Problems less frequently referred to are introduced in the text.

• Folklore and Utility Lemmas. Useful identities, reductions, and algorithmic build-
ing blocks.

• Core Concepts and Techniques. An introduction to the high-level obstacles, tools
and opportunities surrounding subset sum problems.

2.1 Notation
Variables and Constants. With occasional exceptions, we adopt the following conventions
throughout this thesis: lowercase Roman letters (ℓ, n, etc.) denote variables; lowercase Greek
letters (ε, α, etc.) denote numerical constants; capital Roman letters (L, W , etc.) denote
sets, multisets, or multidimensional arrays such as matrices; and calligraphic capital letters
(W , Q, etc.) denote collections of sets.

An arrow (⃗) over a character indicates a vector (x⃗ = (x1, x2, . . . , xn), etc).

Logarithms. When written without a specified base, log(·) denotes the base-2 logarithm.

16

Tim Randolph Columbia University

Big-O. We augment standard big-O notation as follows:
We use O-tilde notation (Õ, Ω̃, Θ̃) to suppress polylog(n) factors, regardless of the argu-

ment. For example, we have Õ(2n) = O(2n · polylog(n)) and Ω̃(n) = Ω(n
polylog(n)). Likewise,

the O-star notation (O∗, Ω∗, Θ∗) suppresses poly(n) factors, regardless of the argument. For
example, O∗(2n) = O(2n · poly(n)) and Ω∗(1) = n−O(1).

Variables in the subscript of big-O notation are treated as constants; that is, terms which
depend solely on these variables are suppressed. For example, Ok(n) = f(k) ·O(n) for some
function f(k) that does not depend on n.

Probability. Random variables appear in boldface. We write “x ∼ S” to indicate that the
element x is sampled uniformly at random from the finite (multi)set S.

Sets and Lists. We write [a : b] for the set of integers {a, a + 1, . . . , b} and [a] for
{1, 2, . . . , a}. Especially when discussing the Generalized Subset Sum problem, it will be
helpful to discuss sets of small integers symmetric about zero. Consistent with our prior
notation, we write [−a : a] for the set {−a,−a+ 1, . . . , a+ 1, a}. We add the shorthand [±a]
for the set {±1,±2, . . . ,±a} = [−a : a] \ {0}.

The square cup (⊔) denotes a disjoint union. For example, X = A ⊔ B ⊔ C indicates a
tripartition of X into the disjoint sets A, B, and C.

Given a (multi)set or list Y of integers, we adopt several shorthands.

Σ(Y) :=
∑
y∈Y

y

denotes the sum of the elements of Y , while 2Y denotes the power set (set of all subsets) of
Y. We write

Y + α := {y + α | y ∈ Y },
Y (mod p) := {y (mod p) | y ∈ Y }, and

f(Y) := {f(y) | y ∈ Y }

when f takes elements of Y as arguments. We make one major exception to the general rule:
if s is an integer, sA does not denote the set {sy | y ∈ Y }, instead, it denotes the iterated
sumset (see notation for additive combinatorics, below).

We write
diam(Y) := max

y1,y2∈Y
|y1 − y2|

for the diameter of the set Y .
We index into lists using square brackets: given a list L, L[i] denotes its ith element, and

L[a : b] denotes the sublist L[a], L[a+ 1], . . . , L[b].

17

Tim Randolph Columbia University

Vectors. Given an n-element vector x⃗ and a set T ⊆ [n], we write x⃗T to denote the
projection of x⃗ onto the indices given by T . We define the support supp(x⃗) ⊆ [n] to be the
set of nonzero coordinates of x⃗.

We use the ◦ symbol to represent the operation of vector concatenation; for example
(a1, a2, a3) ◦ (b1, b2) = (a1, a2, a3, b1, b2).

Given two m-dimensional vectors x⃗ and y⃗, we use the center dot to denote the dot product

x⃗ · y⃗ := x1y1 + · · ·+ xmym.

For a, b ∈ Zn
≥0 we say that a is lexicographically prior to b, denoted a ≺lex b, if and only

if there exists k ∈ [n] such that a[k] < b[k] and for every 1 ≤ i < k it holds that ai = bi.
Observe that ≺lex is a total order and that every set of vectors S ⊆ Zn

≥0 contains a unique
element that is lexicographically minimal.

Matrices. Given a m×n matrix A, we write A[i, j] to denote the component of A at row i,
column j. We write A[i, ·] and A[·, j] to denote the ith row and jth column of A, respectively.

We write Jm×n to denote the m× n matrix in which each entry is 1.

Error terms. Given a function or constant ρ > 0 we write a± ρ as shorthand for the range
[a − ρ, a + ρ], as in the expression x ∈ (1 ± ρ)f(n). Likewise, for ε ∈ (0, 1) and b ≥ 1, we
write a ∈ b1±ε to indicate a ∈ [b1−ε, b1+ε].

We use similar notation for asymptotic error terms: for example, x ∈ f(n)±o(n) indicates
that for any positive constant ε there exists n0 such that x ∈ f(n)± εn for all n > n0.

Norms. Given an n-dimensional vector x⃗, we write the p-norm of x⃗ as

||x⃗||p :=
∑

i∈[n]
|xi|p

1/p

.

We make use of the Manhattan norm ||x⃗||1, the Euclidean norm ||x⃗||2, and the maximum
norm ||x⃗||∞ := maxi |xi|.

When we apply a p-Norm to a matrix, we consider the matrix as a 1-dimensional array:
for example, given A ∈ Zm×n, ||A||∞ denotes maxi,j A[i, j].

Given a real number r, we write ||r||R\Z to denote the distance from the nearest integer.

Group Theory and Linear Algebra. Given an integer m, we write Z/mZ to denote
the cyclic group of order m (under addition). When p is prime, every element of Z/pZ is a
generator except for 0.

A lattice in Rd is defined by d linearly independent vectors v1, v2, . . . , vd ∈ Rd, collectively

18

Tim Randolph Columbia University

referred to as the basis of the lattice. The lattice itself is the set

Λ =
∑

i∈[d]
aivi

∣∣∣∣∣∣ ai ∈ Z


of all integer linear combinations of v1, v2, . . . , vd, and each point in Λ is referred to as a
lattice vector.

The determinant of a lattice, denoted det(Λ), is the determinant of the matrix whose
columns are the lattice basis. Geometrically, det(Λ) is the volume of the fundamental paral-
lelepiped spanned by the lattice basis. In general, if T is a convex body, we write vol(T) to
denote the volume of T .

Entropy. For x, y ∈ [0, 1], we let

H(x) := −x log2(x)− (1− x) log2(1− x) (2.1)

denote the binary entropy function, and write H−1(y) to denote the (smaller) pre-image of
this function. Overloading notation, we also write

H(α1, α2, . . . , αm) := −
∑

i∈[m]
αi log2(αi) (2.2)

for the the entropy function on m arguments, which is well-defined for nonnegative inputs
α1, α2, . . . , αm satisfying ∑i∈[m] αi = 1.

Stirling’s Approximation. We use the following well-known consequences of Stirling’s
approximation, which states

n! = Θ∗
(
nn

en

)
.

For each integer j ∈ [0 : n/2], we have(
n

j

)
= Θ(

√
n2H(j/n)n); moreover (2.3)

∑
i ≤ j

(
n

i

)
≤ 2H(j/n)n. (2.4)

Similar bounds hold for the multinomial coefficients, which are given by(
n

α1n, α2n, . . . , αmn

)
:= n!

(α1n)!(α2n)! . . . (αmn)!

19

Tim Randolph Columbia University

for nonnegative α1, α2, . . . , αm such that ∑i∈[m] αi = 1, assuming αin is an integer for every
i ∈ [m]. Substituting using Stirling’s approximation yields

(
n

α1n, α2n, . . . , αmn

)
= Θ∗

 ∏
i∈[m]

α−αin
i

 (2.5)

= Θ∗
(
2H(α1,α2,...,αm)n

)
. (2.6)

Birthday Paradox. The Birthday Paradox (named after the surprising fact that 23 people
sampled at random are more likely than not to contain a pair sharing a birthday) formalizes
the intuition that we are highly likely to see at least one collision after sampling O(

√
n)

times from a set of cardinality n.

Lemma 1 (The Birthday Bound). Let Y be a set of cardinality |Y | = n and fix a := a(n) > 0.
If we sample a

√
n elements uniformly at random with replacement from Y , the probability

we see some element twice is
1− e−Ω(a2).

Proof. For simplicity, condition on the event that we do not see a collision in our first
a
√
n/2 samples from Y . In this event the probability we see no collisions in the second

a
√
n/2 samples from Y is at most

(
1− a

2
√
n

)a
√

n
2

≤ e− a2
4

by Bernoulli’s inequality.

Additive Combinatorics. Given an integer set A (or, more generally, any subset of a
group), the sumset is denoted

A+ A := {a1 + a2 | a1, a2 ∈ A}.

The doubling constant of the (finite) set A is

C = CA := |A+ A|
|A|

,

with the subscript omitted when the set is clear from context. We write sA as shorthand
for the iterated sumset A+ . . .+ A︸ ︷︷ ︸

s

.

20

Tim Randolph Columbia University

A generalized arithmetic progression (GAP) P is an integer set

P = {ℓ1y1 + ℓ2y2 + · · ·+ ℓdyd : 0 ≤ ℓi < Li,∀i ∈ [d]},

defined by the integer step vector y⃗ = {y1, y2, . . . , yd} and the integer dimension bounds
L1, L2, . . . , Ld. We say that P has dimension d and size (or volume) |P |.

We can think of a GAP P as a d-dimensional parallelepiped projected onto the integer
line using y⃗. We say that P is proper if |P | = L1L2 . . . Ld, that is, if each point in the
parallelepiped projects to a unique point on the line.

Subset Sums. Because we refer to sets of subset sums constantly throughout the thesis,
we introduce some new notation. The choice of the section sign or double-s symbol (§) is
intended to suggest the set of subset sums.

• §(Y) denotes the set of subset sums of Y ; that is, the set

§(Y) = {Σ(T) | T ⊆ Y }.

Likewise, §⃗(Y) denotes the list containing the elements of §(Y) in sorted order from
small to large.

• If we treat the input as a vector x⃗ = (x1, x2, . . . , xn), we likewise write §(x⃗) for the set
of subset sums x⃗ · {0, 1}n.

• In the Generalized Subset Sum problem, we may seek a solution c⃗ ∈ Cn satisfying
x⃗ · c⃗ = t for some coefficient set C ̸= {0, 1}. In that case, we overload notation and
write

§(x⃗) := §C(x⃗) = x⃗ · Cn

to denote the set of all sums that result from taking the dot product of the input vector
x⃗ and a coefficient vector from Cn.

• Finally, we extend our notation by writing

§α(Y) := {Σ(T) | T ⊆ Y, |T | ≤ α|Y |}

to denote the set of subset sums of Y that can be made by adding together at most
α|Y | elements of Y . For example, the Representation Method (Section 1.1.2) makes
use of the quartersums §1/4(Y) of Y , while Chapter 4 makes use of the halfsums §1/2(Y)
of Y .

We will sometimes assume that, given an element y ∈ §(Y) or §⃗(Y), our algorithms can
recover a subset Y ′ ⊆ Y such that Σ(Y ′) = y. This is without loss of generality when §(Y)
is generated algorithmically, in which case we can create a data structure that stores one or
more sets Y ′ with Σ(Y ′) = y for each y ∈ §(Y) without changing the asymptotic runtime of
the procedure.

21

Tim Randolph Columbia University

2.2 Problem Statements
We use the term “Subset Sum” informally to refer to the family of algorithmic problems in
which the input consists of a setX of numbers and a target t and the goal is to recover a subset
of X that adds up to t. However, this description leaves certain parameters unspecified,
including bounds (if any) on the size of the numbers, the group of which X is a subset (Z,
R, or something else), whether the input may contain duplicate numbers, and the memory
model of the computing machine used to solve the problem. This section specifies several
Subset Sum problems as well as other closely related problems.

2.2.1 Generalized Subset Sum
The following problem generalizes many Subset Sum problems.

Problem 1: Generalized Subset Sum (GSS)

Input:

• An integer range bound x̂.

• An input vector x⃗ = (x1, x2, . . . , xn) or multiset X = {x1, x2, . . . , xn} satisfying
xi ∈ [0 : x̂− 1] for all i ∈ [n].

• A set C ⊂ Z of allowed coefficients.

• A target integer t, sometimes fixed at t = 0.

Output: A coefficient vector c⃗ ∈ Cn such that c⃗ · x⃗ = t, if one exists, or ‘No’ if there
is no solution. Equivalently, when the input is considered as the multiset X, we accept
the submultiset S ⊆ X with Σ(S) = t.

Writing the solution as an n-dimensional coefficient vector highlights the close connection
between Subset Sum and Integer Programming, to which we will return in Chapter 6.

GSS can be reduced to several other Subset Sum problems by choosing certain fixed
values for the coefficient set C:

• If we set C = {0, 1}, we recover the standard Subset Sum problem. Hereafter, we
refer to this problem as “Vanilla” Subset Sum to distinguish it from other variants.

• If we set C = {−1, 1}, we get the Partition problem (equivalent, via a simple trans-
lation, to Vanilla Subset Sum).

22

Tim Randolph Columbia University

• If we set C = {−1, 0, 1} and t = 0, we get the Equal Subset Sum problem (ESS).
Here, the t = 0 requirement can be relaxed; if t = 0, we typically disallow the trivial
solution c⃗ = 0⃗.

• If we set C = N, we get the Unbounded Subset Sum problem.

2.2.2 k-SUM
Perhaps the most familiar parameterization of Subset Sum is that in terms of the number
of solution elements. This problem is known as k-SUM:

Problem 2: k-SUM

Input:

• An integer parameter k.

• An integer set X = {x1, x2, . . . , xn}.

• A target integer t, sometimes fixed at t = 0.

Output: S ⊆ X with |S| = k such that Σ(S) = t, or ‘No’ if there is no solution.

There are at least two other common formulations of k-SUM.

• In Multilist k-SUM, k distinct lists of cardinality n are specified, and solutions must
select one element from each list.

• In Multiset k-SUM, X may contain duplicate elements.

Multilist k-SUM can be reduced to k-SUM in time Ok(n) and with an Ok(1)-factor runtime
blow-up, while Multiset k-SUM can be reduced to k-SUM in time Ok(n · log n), at the cost of
an Ok(log n)-factor runtime blow-up. Both reductions use standard arguments. We include
a proof of each reduction for completeness in Appendices A.1 and A.2.

2.2.3 C-Subset Sum and (C, k)-SUM
Chapter 6 of this thesis considers the parameterization of Subset Sum and k-SUM in the
doubling constant, a choice which quantifies the amount of “additive structure” in the input.
Specifically, we consider the following variants of Subset Sum and k-SUM.

23

Tim Randolph Columbia University

Problem 3: C-Subset Sum

Input:

• An integer parameter C.

• An integer set X = {x1, x2, . . . , xn} such that |X +X| ≤ C|X|.

• A target integer t, sometimes fixed at t = 0.

Output: S ⊆ X such that Σ(S) = t, or ‘No’ if there is no solution.

Problem 4: (C, k)-SUM

Input:

• Integer parameters C and k.

• An integer set X = {x1, x2, . . . , xn} such that |X +X| ≤ C|X|.

• A target integer t, sometimes fixed at t = 0.

Output: S ⊆ X with |S| = k such that Σ(S) = t, or ‘No’ if there is no solution.

2.3 Folklore and Utilities
A variety of folklore results, lemmas, reductions and transformations facilitate easier han-
dling of the Subset Sum problem and allow us to make useful assumptions without loss of
generality.

2.3.1 One-Sided Error, Instance Splitting, and Guessing Solution
Sizes

A candidate solution to Subset Sum can be checked in linear time by simply adding up the
numbers. This allows us to assume, at the cost (at worst) of an additional O(n) factor in
the runtime, that none of our algorithms return false positives. In other words, whenever
we design a randomized algorithm to recover a Subset Sum solution, we may assume that it
returns a correct solution or “Failure”, never an incorrect solution.

24

Tim Randolph Columbia University

Procedure SubsetSumEnumeration(Y)

Input: An integer (multi)set Y = {y1, . . . , yn}.
Output: The sorted list §⃗(Y).

1. Initialize §⃗(Y∅) := (0).

2. For i ∈ [n]:

(a) Create the sorted list §⃗′(Y[i−1]) := §⃗(Y[i−1]) + yi.

(b) Create the sorted list §⃗(Y[i]) obtained by merging §⃗′(Y[i−1]) and §⃗(Y[i−1]).

Figure 2.1: Efficiently enumerating §⃗(Y) given the (multi)set Y .

This in turn allows us to more easily substitute a set of sub-instances for the original
problem, a trick we will refer to as “Instance Splitting”. For example, suppose we know that
a Subset Sum instance Y has a solution if and only if at least one of a family of subinstances
Y = (Y1, Y2, . . . , Yf(n)) admits a solution. Because of the one-sided error property, if we
have a randomized algorithm for Subset Sum, we can solve each subinstance in parallel and
recover a solution to the original problem at the cost of an additional f(n) factor in the
runtime, without worrying about false positives.

As an example of this technique, consider the application of guessing solution size. Triv-
ially, the Subset Sum instance (Y, t) admits a solution if and only if (Y, t) admits a solution
of size s for at least one value s ∈ [n]. Suppose we have an algorithm that takes the solution
size s as an input parameter and solves the Subset Sum problem, returning a correct solution
only if there exists a solution of size s. We can then run this algorithm n times, once for
every s ∈ [n], effectively “guessing” the solution size while increasing runtime by an O(n)
factor. In this situation, we can assume that our algorithm correctly guesses the size of a
solution without loss of generality.

2.3.2 Output-Linear Enumeration of §⃗(Y)

A basic primitive for our algorithms is the sorted list §⃗(Y). As it happens, with a careful
implementation, we can enumerate the elements of §⃗(Y) in (almost) output-linear time. To
begin, Algorithm 2.1 displays an O(2|Y |)-time folklore algorithm that enumerates §⃗(Y):

Lemma 2 (Sorted Sum Enumeration; Folklore). There exists an algorithm (Algorithm 2.1)
that, given an integer (multi)set Y , enumerates the sorted list §⃗(Y) in time O(2|Y |).

25

Tim Randolph Columbia University

Proof. Refer to Algorithm 2.1, which is a variation on a merge sort algorithm. Since

|⃗§(Y[i−1])| = |⃗§′(Y[i−1])|
≤ |⃗§(Y[i])|
≤ 2|⃗§(Y[i−1])|

for each i ∈ [n], the runtime of Algorithm 2.1 is∑
i∈[n]

O
(
|⃗§(Y[i−1])|+ |⃗§(Y[i])|

)
=
∑
i∈[n]

O(|⃗§(Y[i])|)

=
∑
i∈[n]

O(2i)

= O(2n).

Moreover, using the same analysis it is easily verified that Algorithm 2.1 runs in time
O∗(|⃗§(Y)|) for any Y . This is useful when §⃗(Y) is very small.

Corollary 1 (Sorted Sum Enumeration for Very Small |§(Y)|). Algorithm 2.1 runs in time
O∗(|§(Y)|).

For the later purposes of log shaving, we observe that we can shave polynomial factors
from the runtime of Algorithm 2.1 if |§(Y)| is smaller than 2n by a poly(n) factor:

Lemma 3 (Sorted Sum Enumeration for Small |§(Y)|). If Y is a multiset of |Y | = n integers
with |§(Y)| ≤ 2n ·n−ε for some constant ε > 0, Algorithm 2.1 runs in time O(2n ·n−ε · log n).

Proof. If |§(Y)| ≤ 2n · n−(1+ε), then because

|⃗§(Y[i])| ≤ |⃗§(Y[n])| = |§(Y)|

for each i ∈ [n], it is easy to verify that the algorithm runs in time O(n · |§(Y)|) = O(2n ·n−ε).
Now suppose that |§(Y)| ≥ 2n · n−(1+ε). Using the bound |⃗§(Y[i])| ≤ 2i for i ≤ log |§(Y)|

and the bound |⃗§(Y[i])| ≤ |§(Y)| for log |§(Y)| < i ≤ n, the runtime of Algorithm 2.1 is∑
i∈[n]

O(|⃗§(Y[i])|) =
∑

i ≤ log |§(Y)|
O(2i) +

∑
log |§(Y)|<i≤n

O(|§(Y)|)

= O(|§(Y)|) + (1 + ε) · log n ·O(|§(Y)|)
= O(|§(Y)| · log n)
= O(2n · n−ε · log n).

Remark 1. Lemma 3 gives a tight analysis of the algorithm when |§(Y)| = 2n · n−ε, as can
be seen by considering the case of the n-element multiset

Y = (20, 21, . . . , 2n−ε log n−1, 1, 1, . . . , 1).

26

Tim Randolph Columbia University

2.3.3 Bounds on Solution Size
The Subset Sum problem (Y, t) admits a solution if and only if the “complement” problem
(Y,Σ(Y) − t) admits a solution. (This is because Σ(Y ′) = t for some Y ′ ⊆ Y if and only if
Σ(Y \Y ′) = Σ(Y)−t.) Because our algorithms may attempt to solve both the given problem
and its complement, we can thus assume without loss of generality that some solution has
size at most n/2 (if a solution exists). Note the casual use of Instance Splitting here.

Define a balanced Subset Sum solution to be Y ′ ⊆ Y with Σ(Y ′) = t and |Y | ∈ n/2±o(n).
Subset Sum instances with unbalanced solutions can be solved faster than Meet-in-the-
Middle, and it is generally true that balanced instances are the hardest class of instances for
Subset Sum problems, at least using current approaches.

A neat deterministic technique known as the sliding window approach (see, e.g., [DGIM02]),
when combined with Instance Splitting, allows us to sample exactly half of an arbitrary input
subset without loss of generality.
Lemma 4 (Sliding Window Sampling). Fix a list X of length n and an arbitrary subset
A ⊆ X. For i ∈ [n], consider the partition family (Yi, Zi)i∈[n] given by

Yi := {xi, . . . , xi+n/2−1 (mod n)}, Zi = X \ Yi.

There exists i ∈ [n] such that

|Yi ∩ A| ∈
|A|
2 ± 1/2.

Proof. Observe that

E
i∈[n]

[|Yi ∩ A|] =
∑
i∈n

|Yi ∩ A|
n

= |A|2
and that |Yi ∩ A| increases or decreases by at most 1 every time we increment i. Thus, to
achieve the expectation, there must exist i ∈ [n] satisfying the lemma condition.
Lemma 5 (Solving Unbalanced Subset Sum). Fix a Subset Sum instance (X, t). For any
a := a(n) ∈ (0, n/2], we can deterministically recover a Subset Sum solution of size at most
a in time O∗(

(
n/2
a/2

)
) = O(2H(a/n)n/2) if one exists.

Proof. Using Lemma 4 and instance splitting; select a partition (Yi, Zi) of X such that

|Yi ∩ S| ∈
|S|
2 ± 1/2.

Enumerate all at most a+1
2 -sized subsets of Yi and Zi, respectively, and check the resulting

sorted lists of sums for a pair that sums to t. This takes time∑
i ≤ a+1

2

(
n/2
i

)
≤ 2H(2j/n)n/2 = O(2H(a/n)n/2).

27

Tim Randolph Columbia University

by Stirling’s Inequality (2.4).

We can also speed up the Meet-in-the-Middle approach if we can identify any set of size
at most n/2 with very few subset sums. This idea goes back to [AKKN15, AKKN16].

Lemma 6 (Solving Subset Sum with a Structured Subset (C.f. [AKKN16] Lemma 3.2)).
Fix a Subset Sum instance (X, t), and suppose there exists a subset Y ⊆ X, known to the
algorithm, of size |Y | ≤ n/2 satisfying

|§(Y)| ≤ 2|Y | · n−ε

for some constant ε > 0. We can solve the instance in time Õ(2n/2 · n−ε/2).

Proof. Let A be any set of cardinality (n+ε log n
2) satisfying

Y ⊆ A ⊆ X.

We have
|§(A)| ≤ 2|A\Y | · |§(Y)| ≤ 2n/2 · n−ε/2.

We also have
|§(X \ A)| ≤ 2|X\A| = 2n/2 · n−ε/2.

By Lemma 3, it takes time O(2n/2 · n−ε/2 · log n) to enumerate the sorted lists §⃗(A) and
§⃗(X \ A) and run Algorithm 1.1.

2.3.4 Bounds on Input Size

If t = 2o(n), standard dynamic programming algorithms solve Subset Sum in time O(nt) =
2o(n) [Bel66], and these methods are easily adapted to GSS. Thus, when considering exponential-
time algorithms for GSS, we can assume without loss of generality that t = |C|Ω(n).

On the other hand, (Generalized) Subset Sum instances with extremely large input in-
tegers can be transformed, via standard reductions, into instances of size t = |C|O(n). We
prove the following lemma:

Lemma 7 (Input Range Reduction (c.f. [AKKN16], Lemma 2.2)). Fix a GSS instance given
by (x̂, x⃗, C, t), for some

x̂ = 222...2
n

︸ ︷︷ ︸
2o(n)

,

i.e., a power tower of height 2o(n). For any ε > 0, there exists a poly(n)-time algorithm that
transforms (x̂, x⃗, C, t) into a new GSS instance (x̂′, x⃗′, C, t′) such that x̂′ < 2(1+ε)n and

For all c ∈ Cn, c⃗ · x⃗′ = t′ if and only if c⃗ · x⃗ = t

with probability 1− e−Ω(n).

28

Tim Randolph Columbia University

Proof. Define
smax := n · (max

c∈C
|c|) · x̂,

which serves as an upper bound on |x⃗ · c⃗| for any c⃗ ∈ Cn. Sample a random prime

p ∼ [log2(smax) · 2(1+ε)n : log2(smax) · 2(1+ε)n+1].

Using p, we define a new, random Subset Sum instance

(x⃗′, t′) := (x⃗, t) (mod p).

Taking a union bound over the probability given in Lemma 8, it follows that the chance that
any sum s ∈ §(x⃗) \ {t} satisfies s = t (mod p) is at most

|§(X)| · log2(smax)
log2(smax)2(1+ε)n ≤

1
2εn

,

where we use the fact that |§(X)| ≤ 2n for every set of cardinality n.
Because the new instance is created by taking remainders modulo p, if c⃗ · x⃗ = t for some

c⃗ ∈ Cn, this implies c⃗ · x⃗′ = t′ deterministically, and thus we have c⃗ · x⃗′ = t⃗′ if and only if
c⃗ · x⃗ = t⃗ with probability 1− e−Ω(n).

The new range bound satisfies

x̂′ = p ≤ log2(smax)2(1+ε)n,

which is O∗(2(1+ε)n) for smax = 2nO(1) . If smax is still too large, we repeat the reduction 2o(n)

times and take a union bound over the probability that any iteration fails to complete the
proof.

The particular statement of Lemma 7 is designed to emphasize the fact that extremely
large input sizes are no obstacle; for any remotely plausible input, we can reduce each integer
to size 2O(n) with very high probability. Moreover, the specific parameters of the lemma can
be easily tweaked: we achieve an exponentially small error probability by reducing the input
to size at most 2(1+ε)n for an arbitrarily small epsilon, but input bounds of size O∗(2n) can
be achieved with error probability o(1).

This reduction does not affect our assumption of one-sided error: upon recovering c⃗ such
that c⃗ · x⃗′ = t′, our algorithm can confirm that c⃗ · x⃗ = t before returning any answer (at least,
as long as we can efficiently multiply the input integers).

29

Tim Randolph Columbia University

2.3.5 Prime Hashing
A central step in the Representation Method involves sorting a set family according to the
residue class of each set’s sum, modulo a large prime number p. That is, we are given a set
family X = (X1, X2, . . . , Xm) and would like to recover every Xi ∈ X such that Σ(Xi) = r
(mod p). This “prime hashing” operation serves to “filter” the set family while preserving
some information about the sum of each set (its residue class modulo p).

In order for this step to work, it is important that the set family distributes “nicely”
over the residue classes: we want the elements of |Y | to fall into many different classes.
Fortunately, this event obtains with high probability as long as diam(|Y |) is not too large.
The following folklore result is closely related to the Prime Number Theorem:

Lemma 8 (Folklore). For any sufficiently large integer r and any positive integer x, a prime
p chosen uniformly at random from [r : 2r] divides x with probability at most log2(x)/r.

With this tool, we can derive a useful lemma regarding the distribution of sets over
random primes:

Lemma 9 (Prime Distribution Lemma). Given an integer set Y of n elements, fix an integer
bound pmax satisfying

|Y | log2(diam(Y)) < nk · pmax (2.7)
for some positive constant k, and sample p ∼ [pmax, 2pmax]. With constant probability, the
set of residue classes

R :=
{
r ∈ [p]

∣∣∣∣∣ |{y ∈ Y : y = r (mod p)}| ≥ |Y |2p

}

has cardinality |R| = Ω(|Y |n−k).

Proof. Define the random set

P := {y1 ̸= y2 ∈ Y × Y | p divides |y1 − y2|}.

We will refer to (y1, y2) ∈ P as a colliding pair with respect to p.
It follows from Lemma 8 that for any pair of distinct elements y1, y2 ∈ Y ,

Pr
p

[p divides |y1 − y2|] ≤
log2(diam(Y))

pmax

.

By linearity of expectation over the elements of Y , the expected cardinality of P is

E
p

[|P |] < |Y |2 log2(diam(Y))
pmax

(2.8)

30

Tim Randolph Columbia University

< |Y |nk, (2.9)

where the second line follows from (2.7). Thus

|P | < 2 · |Y |nk (2.10)

with probability at least 1/2 by Markov’s inequality.
Condition on the choice of a prime p satisfying (2.10) and suppose for contradiction that

R has cardinality
|R| < |Y |

18 · nk
. (2.11)

Together, the residue classes in [p] \R contain at most
|Y |
2p · p = |Y |2

elements of Y by definition, which means that residue classes in R contain at least |Y |/2
elements of Y . Suppose these elements are distributed evenly among the residue classes in
R, thus minimizing collisions. It follows that the number of colliding pairs is at least

|P | ≥ |R| ·

(
|Y |

2|R|

)
·
(

|Y |
2|R| − 1

)
2

= |Y |4 ·
(
|Y |

2|R| −O(1)
)

≥ |Y | ·
(

18nk

8 −O(1)
)

= (2 +O(1))|Y | · nk. (2.12)

Here, the first line counts the number of collisions (with the simplifying assumption that
|Y |/2 divides evenly into |R|; this changes the calculation by a factor of at most 1 ± o(1)).
The second line is elementary algebra and the third substitutes using (2.11). This contradicts
(2.10), and thus (2.11) is false with constant probability, completing the proof of the lemma.

Taking the limit as k → 0 gives the following corollary:
Lemma 10 (Second Prime Distribution Lemma). Given an integer set Y of n elements, fix
an integer bound pmax satisfying |Y | log2(diam(Y)) < γ · pmax for any positive constant γ,
and sample p ∼ [pmax, 2pmax]. With constant probability, we have

|Y (mod p)| = Ω(|Y |).

Proof. Follow the proof of Lemma 10 with γ in place of nk, and choose constants sufficiently
large in (2.10) and (2.11) that (2.12) holds.

31

Chapter 3

Average-Case Algorithms for Subset
Sum and Equal Subset Sum

This chapter uses material from [CJRS22]. Although what follows has been refurbished for
inclusion in this thesis, the arguments presented represent the collaborative efforts of the
four original authors: Xi Chen, Yaonan Jin, Rocco A. Servedio, and I.

This chapter contains the following subsections:

• Summary of Results. Randomized algorithms for GSS on coefficient sets C = [±d]
and [−d : d] and average-case input sampled from [0 : x̂− 1]n.

• Structural Results. Theorems characterizing when we should and should not expect
GSS solutions to occur in the average case, parameterized in terms of the input range
bound x̂ and the coefficient set C.

• Algorithmic Results. A description of our algorithmic approach, including analyses
of correctness and runtime.

• Generalized Number Balancing. Corollary results for Generalized Number Bal-
ancing, effectively an optimization variant of GSS, in the average case.

In light of the broad body of work that has been done on the average-case version of the
original Subset Sum problem, it is natural to consider average-case Generalized Subset Sum
(GSS), in which each component of the input vector x⃗ is selected uniformly and indepen-
dently at random. The most natural candidate for the input range is the set [0 : x̂ − 1]n,
where x̂ := x̂(n) = 2Θ(n) is the bound on the input size.1

1Subset Sum on smaller inputs can be solved in subexponential time via dynamic programming, while

32

Tim Randolph Columbia University

There are two natural average-case variants of the GSS problem: in the first variant, the
target value is obtained by sampling a subset of the input at random, thus creating a “hid-
den” solution. Thus every instance of this average-case problem variant admits a solution.
This variant of the problem is motivated by cryptographic applications, and corresponds to
the average-case variant of Subset Sum studied by [HGJ10, BCJ11] and others. We refer to
this variant as the “cryptographic version” of the average-case GSS problem. In the second
version, which we consider in this section, the target is a fixed value independent of the
random input vector x⃗. This “balancing version” of the problem is the more natural gen-
eralization of Equal Subset Sum (in which we typically consider the fixed target 0). Since
both Yes-instances and No-instances are possible for this variant, a natural goal that arises
in its study is to understand the probability (as a function of the various parameter settings)
that a solution exists. Structural questions of this type have in fact been the subject of
considerable study for the special case of C = {±1}; see for example [BCP01, Lue98].

In the context of the current thesis, this chapter serves as a detailed introduction to
the use of the Representation Method (Section 1.1.2); in what follows, we generalize the
method to average-case GSS. In doing so, we hope to further the reader’s intuitions about
the technique.

Our structural results provide some facts about the “typical” form of the set of subset
sums §(x⃗): when the inputs are sampled uniformly at random over a range of size x̂ := x̂(n),
we expect to see solutions and a rapid increase in the number of collisions (pairs of input
subsets with the same sum) when x̂ ≪ |C|n. This contrasts sharply with the set of worst-
case instances that appear to be the most difficult, in which we see collisions early and often,
and motivates the strategy of attempting to exploit this structure to develop better worst-
case algorithms. In subsequent chapters we will depart from such “typical” input sets and
consider those in which §(x⃗) has various kinds of significant structure.

3.1 Summary of Results
We consider Generalized Subset Sum2 (GSS) supported on two families of coefficient sets
symmetric about 0: [±d] and [−d : d], where d is an integer constant. As noted in Sec-
tion 2.2.1, this choice of coefficient sets generalizes the problems Partition and Equal Subset
Sum. Via a simple transformation, [±d] also generalizes Vanilla Subset Sum: while the co-
efficient set for this problem is C = {0, 1}, a Vanilla Subset Sum instance x⃗ with target τ
can be easily converted to GSS on [±1] by setting a new target τ ′ := 2τ −∑i∈[n] xi. Using

Subset Sum on superexponential inputs can be effectively reduced to Subset Sum on singly-exponential
inputs (Lemma 7).

2As formally defined in Section 2.2.1.

33

Tim Randolph Columbia University

similar transformations, the results in this chapter can be extended to scale multiples and
translations of [±d] and [−d : d].

Our main algorithmic result for average-case GSS is as follows.

Theorem 1 (Algorithm for Average-Case GSS). Fix any d ∈ N and let C = [±d] or [−d : d].
For any constant ε > 0, there is a randomized algorithm for average-case GSS with running
time O∗(|C|Λ(|C|)n+εn)3 where

Λ(z) := max
1− z+1

2z
logz(z + 1) + 1

z
logz(2)

2
3 −

z+1
3z

logz

(
z+1

2

) . (3.1)

For any range bound x̂ := x̂(n) and any target τ with |τ | = o(nx̂), the algorithm succeeds
on the GSS instance (x̂, τ, x⃗) with probability at least

1− e−Ω(n) when C = [−d : d] and
1− o(1) when C = [±d],

over the draw of x⃗ ∼ [0 : x̂− 1]n and the randomness of the algorithm.

A runtime of |C|αn for GSS should be thought of as analogous to a runtime of 2αn for
Subset Sum. We note that Λ(z) = 0.5− Ω(1/z), and thus our algorithm beats the Meet-in-
the-Middle runtime of O∗(|C|0.5n) by an exponential margin for every constant d. Figure 3.1
plots the function Λ and Table 1.3 lists our algorithm’s runtime on various coefficient sets.

As a special case of Theorem 1, we obtain an average-case algorithm for Equal Subset
Sum that significantly improves on the O∗(30.488n) worst-case runtime of [MNPW19]:

Corollary 2 (Average-Case Equal Subset Sum). There exists an algorithm that solves
Average-Case Equal Subset Sum in time O(30.387n) with success probability 1− e−Ω(n).

Our algorithm has the additional property that it runs faster on dense instances, i.e.,
ones for which x̂ is substantially less than |C|n. Intuitively, this is possible because in this
regime there are likely to be many solutions.

Theorem 2 (Average-Case GSS on Dense Instances). Fix d ∈ N, C = [±d] or [−d : d],
x̂ = |C|αn+o(n) for some α ∈ (0, 1) and a target τ with |τ | = o(x̂n). For any constant ε > 0,
there exists an algorithm that solves average-case GSS in time

O∗(|C|αΛ(|C|)n+εn),
3Note that the runtime of our algorithm is independent of the input bound M . This occurs because the

probability of a Yes-instance is exponentially small when M = 2ω(n).

34

Tim Randolph Columbia University

Λ(|C|)

|C|0.2

0.3

0.4

0.5

2 3 4 5 6 7 8 9 10

Figure 3.1: Plot of Λ. The red points plot Λ(z) for z ∈ [2 : 10].

d ∈ N 1 2 5 10

Runtime [±d] O∗(|C|0.375n)† O∗(|C|0.400n) O∗(|C|0.458n) O∗(|C|0.479n)
[−d : d] O∗(|C|0.387n) O∗(|C|0.419n) O∗(|C|0.462n) O∗(|C|0.480n)

†Our [±1] case differs from the “cryptographic” average-case Subset Sum problem considered in [HGJ10,
BCJ11, Böh11, BBSS20], because we consider the “balancing” problem (for which a solution may or may
not exist).

Table 3.1: Runtime of our algorithm for average-case GSS on various coefficient sets.

where Λ is as defined as in (3.1) and plotted in Figure 3.1. The algorithm succeeds with
probability at least

1− e−Ω(n) when C = [−d : d] and
1− o(1) when C = [±d],

over the draw of x⃗ ∼ [0 : x̂− 1]n and the randomness of the algorithm.

That is, we achieve the same result as Theorem 1, but with the exponent in the runtime
scaled down by a factor of α.

The proof of Theorem 2 is similar to the proof of Theorem 1, with the following obser-
vation enabling a speedup: if x̂ ≤ |C|(1−ε)n for any ε > 0, then we can reduce the instance
size to n′ so that x̂ falls inside the window |C|(1±ε)n′ and Algorithm 3.9 applies. Moreover,
shrinking the instance size results in a faster running time. Theorems 1 and 2 are proved in
Section 3.3 below.

35

Tim Randolph Columbia University

Crucial ingredients underlying our algorithms are new structural results on the probability
that random GSS instances have solutions. The following result identifies the regimes in
which GSS instances on C = [−d : d] are very likely, and very unlikely, to have solutions in
the average case.

Theorem 3 (GSS Solution Probability for C = [−d : d]). Let C = [−d : d] for some fixed
d ∈ N, and fix any constant ε > 0. For x⃗ ∼ [0 : x̂ − 1]n and any integer τ satisfying
|τ | = o(x̂n), we have

Pr
x⃗

[
∃ c⃗ ∈ Cn \ {⃗0}4 : x⃗ · c⃗ = τ

] ≥ 1− e−Ω(n) if x̂ ≤ |C|(1−ε)n

≤ |C|n
/
x̂ if x̂ ≥ |C|n.

Our proof of the previous theorem uses elementary methods and a novel combinatorial
argument. We also prove an analogous result for the C = [±d] case by a different method:
in this case, we adapt the analysis of [BCP01], which results in slightly worse probability
guarantees. (See Corollary 3 and Theorem 4, below.)

Finally, our algorithms can be used to find exponentially precise solutions to Generalized
Number Balancing, essentially an optimization variant of GSS in which input integers are
sampled from the real range (0, 1) and the objective is to find a sum as close as possible to
the target. This extension is presented in Section 3.4.

3.2 Structural Results
This section presents our structural results, which characterize when average-case GSS in-
stances are likely to have a solution. Before proceeding to the full proof, we present a high-
level sketch. We begin with some intuition for the distribution of sums that are achievable
using coefficient set C.

Recall that §(Y) = {Σ(T) | T ⊆ Y } denotes the set of subset sums of Y . Adapting this
notion to GSS, with respect to an input vector x⃗ and a coefficient set C we define the set

§(x⃗) := §C(x⃗) = {c⃗ · x⃗ : c⃗ ∈ Cn \ {⃗0}},

the set of all sums achievable given the input x⃗ and the coefficient set C. (For convenience,
we exclude the trivial solution vector c⃗ = 0⃗ to distinguish between the case in which the
target 0 can be achieved by a nontrivial solution and when it cannot.)

Recall that x⃗T , for any T ⊆ [n], denotes the projection of x⃗ onto the indices given by T ;
this will come in handy later, when we argue by induction over T = [1], [2], . . . , [n].

4The c⃗ = 0⃗ case is special: if τ ̸= 0, 0⃗ is never a solution, and if τ = 0, 0⃗ is always a solution (and typically
ignored).

36

Tim Randolph Columbia University

Since the coefficient set C is symmetric about 0, all elements of the random set §(x⃗)
have magnitude O(x̂n). Standard concentration arguments suggest the intuition that §(x⃗)
should be “tightly concentrated around the origin” in the sense that most of its elements
should have magnitude roughly O(x̂

√
n|C|). We will eventually make this intuition precise.

The C = [−d : d] case. Perhaps surprisingly, our structural results for the coefficient
sets [−d : d] and [±d] are established using very different techniques. Consider the case
of C = [−d : d] first. We are able to show that for any positive constant ε > 0, given
x̂ ≤ |C|(1−ε)n and any fixed integer offset τ with |τ | = o(x̂n), the probability (over a uniform
random x⃗ ∼ [0 : x̂− 1]n) that there exists a solution c⃗ · x⃗ = τ with c⃗ ∈ Cn is exponentially
close to 1. This extremely high probability that there exists a solution translates directly
into the success probability of our algorithms in Theorem 1 and Theorem 2.

Figure 3.2: While §(x⃗[ℓ]) (red set) is sparse, it grows quickly: |§(x⃗[ℓ+1])| (blue set) has
cardinality nearly |C| · |§(x⃗[ℓ])| with high probability.

To establish this structural result, we employ a novel inductive proof. We analyze how
the size of the set |§(x⃗[ℓ])| increases as a function of ℓ by considering the experiment in which
x1,x2, . . . are drawn in succession. We first argue that with very high probability |§(x⃗[ℓ])|
increases rapidly with ℓ until, at some value m < n, it reaches a point at which it is dense
on at least one “large” interval that is “close to” the origin. We then argue that at this point
it suffices to draw a few more elements to ensure that some partial solution∑

i∈[m′]
cixi

will hit the offset τ with very high probability, where m ≤ m′ ≤ n. The remaining ele-
ments xm′+1, . . . ,xn are simply assigned the 0 coefficient to complete the overall solution.
Figures 3.2 and 3.3 illustrate the two principles at work.

The C = [±d] case. When C = [±d], the absence of the 0 coefficient is a funda-
mental obstacle to the previous approach, and indeed we do not know how to achieve an

37

Tim Randolph Columbia University

Figure 3.3: When §(x⃗[ℓ]) (red set) is dense, |§(x⃗[ℓ+1])| (blue set) hits any fixed target point
(green) with nontrivial probability.

exponentially high success probability for C = [±d]. Instead, to handle this case we use a
very different proof strategy that extends the approach of [BCP01], who analyzed the [±d]
case for d = 1. Their analysis (see [BCP01, Theorem 2.1]) shows that for any x̂ ≤ 2(1−ε)n,
the probability that a uniform random input x⃗ ∼ [0 : x̂ − 1]n admits a “perfect” solution
c⃗ ∈ {±1}n is 1− o(1), where a “perfect” solution is one satisfying c⃗ · x⃗ = 1 if ∑i∈[n] xi is odd
and satisfying c⃗ · x⃗ = 0 if ∑i∈[n] xi is even.

We establish a similar result for d > 1. Specifically, we show that if x̂ ≤ |C|(1−ε)n then
given any fixed integer offset τ with |τ | = o(x̂n), the probability (over a uniform draw of x⃗
from [0 : x̂ − 1]n) that there exists a solution c⃗ · x⃗ = τ with c⃗ ∈ Cn is 1 − o(1). At a high
level, our analysis establishing this follows the arguments of [BCP01]; we write the number
of solutions as a random integral over all coefficient vectors, then bound suitable integrals to
characterize the first moment and upper bound the second moment of the relevant random
variable. Generalizing the proof strategy of [BCP01] to [±d] significantly complicates the
analysis but does not substantially change the underlying intuition.

Notably, [BCP01] confronted a parity issue in the case C = [±1]: no solution summing to
a target τ that has parity different from the sum of inputs is possible. Our analysis explains
the parity issue as a result of constructive interference in the integrand of the solution-
counting function and demonstrates that no such issues occur for [±d] when d > 1 (compare
the x⃗ · c⃗ ∈ {τ, τ + 1} in Corollary 3 and x⃗ · c⃗ = τ in Theorem 4).

This proof approach has the advantage that it neatly bounds the first and second mo-
ments of the number of solutions, not just the probability that a solution exists. However,
the probability that a solution exists in the x̂ ≤ |C|(1−ε)n regime will correspond to the
failure probability of our algorithm later, so for our purposes the exponentially small failure
probability given by Theorem 3 is more valuable.

3.2.1 When Solutions Occur in the C = [−d : d] Case
When the coefficient set contains 0, we analyze the probability that a solution exists by
considering the growth rate of the sequence |§(x⃗[1])|, |§(x⃗[2])|, |§(x⃗[3])|, etc. Once we come

38

Tim Randolph Columbia University

upon a set §(x⃗[ℓ]) that contains τ , the existence of a solution is ensured since any remaining
input elements can be assigned the 0 coefficient. The structural result that we prove in this
way is analogous to Theorem 4 (the C = [±d] case), but with exponentially small failure
probability for small x̂.

Upper Bound. We first prove the upper bound in the case that x̂ ≥ |C|n, which is the
simpler half of the proof. Fix a coefficient vector c⃗ ∈ Cn \ {⃗0}, and let i∗ ∈ [n] be an index
such that ci∗ ̸= 0. Conditioning on any outcome of x⃗[n]\{i} from [0 : x̂−1]n−1, x⃗ · c⃗ = τ occurs
with probability at most 1/x̂ over the selection of xi. Union-bounding over all c⃗ ∈ Cn \ {⃗0}
gives the claimed upper bound of |C|n/x̂.

Lower Bound. In the rest of the section, we focus on the case in which

x̂ ≤ |C|(1−ε)n (3.2)

for some positive constant ε > 0.
Recall the definition of the set

§(x⃗) := {c⃗ · x⃗ : c⃗ ∈ Cℓ \ {⃗0}},

and observe that
§(x⃗[1]) ⊆ |§(x⃗[2])| ⊆ · · · ⊆ |§(x⃗[n])|.

That is, because 0 ∈ C by assumption, the set of subset sums achievable using the elements
of x⃗[ℓ] and the coefficient set C strictly grows as ℓ increases. Furthermore, x⃗ admits a solution
if and only if §(x⃗[n]) = §(x⃗) contains τ .

Define the integer quantities

m :=
⌈
ρn+ log|C| x̂

⌉
and m′ :=

⌈(
1− ε

3

)
n
⌉
, (3.3)

where the small constant ρ := ε2

256d2 ln |C| . (3.4)

ℓ = m and ℓ = m′ will mark important thresholds for §(x⃗[ℓ]), and their precise values are
set for our later convenience in the proof of Theorem 3. The first-time reader can ignore the
exact values for now and simply keep in mind the rough size of each quantity:

m <
(

1− 5ε
6

)
n <

(
1− ε

3

)
n ≤ m′ < n. (3.5)

(Here, the first inequality follows from substituting for x̂ using (3.2).)
Our proof proceeds in three steps:

39

Tim Randolph Columbia University

1. Show that with high probability over the draw of the first m elements, §(x⃗[m])
occupies a constant fraction of some length-x̂ interval “close to” from the origin.
To formalize the notion of an interval “far” from the origin, given x⃗ ∈ [0 : x̂− 1]ℓ, we
define the set of large values achievable with x⃗ as

L(x⃗) :=
{
s ∈ §(x⃗) : |s| ≥ ε

8nx̂
}
. (3.6)

This set will contain a small fraction of §(x⃗) with very high probability.

Lemma 11 (Dense Interval Lemma). With probability 1− e−Ω(n) over
x⃗ ∼ [0 : x̂− 1]m, §(x⃗) \ L(x⃗) occupies at least γ-fraction of some length-x̂ interval,
where

γ := ρ2

48|C|2 . (3.7)

In other words, there exists a length-x̂ interval I such that

|I ∩ (§(x⃗) \ L(x⃗))| ≥ γx̂.

The proof follows below.

2. Show that, if §(x⃗[m]) occupies a constant fraction of some length-x̂ interval close to
the origin, with very high probability §(x⃗[m′]) occupies a constant fraction of a
length-x̂ interval containing τ .

Lemma 12 (Interval Shifting Lemma). Let x⃗ ∈ [0 : x̂− 1]m be such that §(x⃗) \ L(x⃗)
occupies a γ-fraction of a length-x̂ interval, and let y⃗ ∼ [0 : x̂− 1]m′−m.
With probability at least 1− e−Ω(n), §(x⃗ ◦ y⃗) occupies a γ-fraction of some length-x̂
interval containing τ .

The proof follows below.

3. Show that, if §(x⃗[m′]) occupies a constant fraction of a length-x̂ interval containing τ ,
there exists a solution with very high probability: τ ∈ §(x⃗[n]).

We begin with Step 3: completing the proof of Theorem 3 assuming Lemmas 11 and 12. We
then prove the lemmas in the subsequent two sections.

Proof of Theorem 3. Combining Lemma 11 and Lemma 12, we have that with probability
at least 1− e−Ω(n) over x⃗ ∼ [0 : x̂− 1]m′ , §(x⃗) contains at least a γ-fraction of some length-x̂
interval containing the target τ .

40

Tim Randolph Columbia University

Fix an x⃗ ∈ [0 : x̂− 1]m′ satisfying this property, and consider the draw of the remaining
n−m′ = Ω(n) random elements: xm′+1, . . . ,xn ∼ [0 : x̂− 1]. If, for any i ∈ [m′ + 1 : n], it
occurs that τ + xi or τ − xi = s ∈ §(x⃗), we are done: we can recover a solution by setting
the coefficients c1, . . . , cm′ to achieve s, setting cj = 0 for all j ∈ [m′ +1 : n]\{i}, and setting
ci to +1 or −1 to complete the solution.

The event that τ + xi or τ − xi ∈ §(x⃗) occurs with probability at least γ/2, as τ is
contained in a γ-dense interval of length at least x̂ and xi ∈ [0, x̂ − 1]. The occurrence of
this event is independent over each i ∈ [m′ + 1 : n], and thus the chance that no solution
exists is at most (1 − γ/2)Ω(n) = e−Ω(n). The result follows from a union bound over this
failure probability and the failure probabilities from Lemmas 11 and 12.

Proof of Lemma 11 (Dense Interval Lemma)

Our first step in proving Lemma 11 is to bound the fraction of §(x⃗) that consists of large
values. This follows easily for all x⃗ ∈ [0 : x̂− 1]ℓ from a concentration inequality:

Claim 1. For any ℓ ∈ [n] and x⃗ ∈ [0 : x̂− 1]ℓ, we have

|L(x⃗)| ≤ |C|ℓ · 2 exp
(
− ε2n

128d2

)
= |C|ℓ · 2|C|−2ρn.

Proof. For ℓ ≥ 1, define independent random variables y1, . . . ,yℓ such that

Pr[yi = cxi] = 1
|C|

for each c ∈ C. We have

|L(x⃗)|
|C|ℓ

≤ Pr
y1,...,yℓ

∣∣∣∣∣∣
∑
i∈[ℓ]

yi

∣∣∣∣∣∣ ≥ εnx̂

8

 ,
from which the claim follows by Hoeffding’s inequality.

Additionally, we would like to show that if §(x⃗[ℓ]) is not γ-dense near the origin, §(x⃗[ℓ]+1)
is likely be larger than §(x⃗[ℓ]) by a factor of almost |C|.

Claim 2. Let ℓ ∈ [m] and let y⃗ ∈ [0 : x̂− 1]ℓ−1 be a vector such that |I ∩ (§(y⃗) \L(y⃗))| < γx̂
for every length-x̂ interval I. For w ∼ [0 : x̂− 1], we have

|§(y⃗ ◦w)|
|§(y⃗)| ≥ (1− ρ/4)|C|

with probability at least 1− ρ/4, where the constant ρ is as defined in (3.4).

41

Tim Randolph Columbia University

Proof. Fix an ℓ ∈ [m] and y⃗ ∈ [0 : x̂ − 1]ℓ−1 such that |I ∩ (§(y⃗) \ L(y⃗)| < γx̂ for every
length-x̂ interval I.

Sample w ∼ [0 : x̂− 1], and consider the random variable

|C| · |§(y⃗)| − |§(y⃗ ◦w)|.

This variable is nonnegative, as each element in §(y⃗) gives rise to at most |C| elements in
§(y⃗ ◦w). If it is small, this means that the set of subset sums of y “grows” by a factor of
nearly |C| when y⃗ is augmented with the input element w. So we begin by proving an upper
bound on the expectation

E
w

[|C| · |§(y⃗)| − |§(y⃗ ◦w)|] . (3.8)

We say that two pairs (s, c) ̸= (s′, c′) ∈ §(y⃗) × C collide if s + cw = s′ + c′w; that
is, if the two pairs indicate two ways to make the same sum in §(y⃗ ◦ w). We can bound
(3.8) by counting the number of collisions that occur. In particular, we observe that we
would have |§(y⃗ ◦ z)| = |C| · |§(y⃗)| if there were no collisions, and the random quantity
|C| · |§(y⃗)| − |§(y⃗ ◦w)| is thus upper-bounded by the total number of collisions that occur
given w.

Observe that a necessary condition for the collision

s+ cw = s′ + c′w

is that
|s− s′| ≤ 2dx̂. (3.9)

This follows from the fact that c, c′ ∈ C = {−d : d} and w ∈ [0 : x̂ − 1]. To bound
the number of pairs (s, c) ̸= (s′, c′) for which (3.9) holds, observe that there are at most
|§(y⃗)| possibilities for s and at most |C|2 possibilities for c and c′. Moreover, by assumption
§(y⃗) \ L(y⃗) does not occupy a γ fraction of any length-x̂ interval. Hence the interval

[s− 2dx̂, s+ 2dx̂]

contains at most 4dx̂γ many elements in §(y⃗) \ L(y⃗). Finally, this interval trivially has at
most |L(y⃗)| many elements in L(y⃗). Thus for each s ∈ §(y⃗), there are at most

4dx̂γ + |L(y⃗)| (3.10)

elements s′ ∈ §(y⃗) such that |s− s′| ≤ 2dx̂.
As a result, the number of pairs (s, c) ̸= (s′, c′) sith |s− s′| ≤ 2dx̂ is at most

|§(y⃗)| · |C|2 · (2|C|x̂γ + |L(y⃗)|) ,

which follows from union-bounding (3.10) over §(y⃗)× C × C.

42

Tim Randolph Columbia University

Each pair (s, c) ̸= (s′, c′) satisfies s + cw = s′ + c′w with probability at most 1/x̂ over
the choice of w ∼ [0 : x̂− 1]. Thus

E
w

[|C| · |§(y⃗)| − |§(y⃗ ◦w)|] ≤ |§(y⃗)| · |C|2
x̂

· (2|C|x̂γ + |L(y⃗)|) (3.11)

≤ |§(y⃗)| · |C|
2

x̂
·
(
2|C|x̂γ + |C|ℓ−1 · 2|C|−2ρn

)
(3.12)

≤ |§(y⃗)| · |C|
2

x̂
·
(
2|C|x̂γ + |C| · |C|m · 2|C|−2ρn

)
(3.13)

≤ |§(y⃗)| · |C|
2

x̂
· (2|C|x̂γ + |C|Bγ) (3.14)

≤ 3|C|3γ ≤ ρ2

16 |C|. (3.15)

Here, the first line uses linearity of expectation, the second line follows from substituting
for |L(y⃗)| using Claim 1, the third line follows from observing that |C|ℓ−1 ≤ |C| · |C|m by
assumption, the fourth line follows from substituting m = ⌈ρn+log|C| B⌉ and observing that
2|C|−ρn) < γ, and the final line follows from substituting the definition of γ (3.7).

Given that the random variable in the expectation is nonnegative, it follows from Markov’s
inequality that

Pr
w

[
|§(y⃗ ◦w)|
|§(y⃗)| < (1− ρ/4)|C|

]
≤ ρ

4 ,

completing the proof of the claim.

We now have all the ingredients required to prove Lemma 11.

Proof of Lemma 11. Consider the experiment in which we draw the inputs x1,x2, . . . ,xm ∼
[0 : x̂− 1] in turn. For each ℓ ∈ [m], let X ℓ denote the indicator random variable that is set
to 1 if either

|I ∩ (§(x⃗[ℓ]) \ L(x⃗[ℓ]))| ≥ γx̂ (3.16)
for some length-x̂ interval I (that is, we have a dense interval close to the origin) or if

|§(x⃗[ℓ])|
|§(x⃗[ℓ−1])|

≥ (1− ρ/4)|C|. (3.17)

(that is, the set of subset sums grows as expected when we draw xℓ).
Then, conditioning on any outcome of (x1, . . . ,xℓ−1) it follows from Claim 2 that the

probability of X ℓ = 1 is at least 1− ρ/4. By a Chernoff bound, the probability that∑
ℓ∈[m]

X ℓ ≥ (1− ρ/2)m

43

Tim Randolph Columbia University

is 1−e−Ω(n). We will show that when this event occurs we must have (3.16) for some ℓ ∈ [m]
and length-x̂ interval I, which in turn implies the same for §(x⃗[m]) \ L(x⃗[m]) given that
§(x⃗[ℓ]) ⊆ §(x⃗[m]) for ℓ ∈ [m].

To this end we assume for contradiction that (3.16) does not hold for any ℓ ∈ [m]. This
implies (3.17) for every ℓ such that X ℓ = 1. Given that §(x⃗[ℓ−1]) ⊆ §(x⃗[ℓ]) for all ℓ ∈ [m], it
follows that

|§(x[m])| ≥ ((1− ρ/4)|C|)(1−ρ/2)m (3.18)
≥ (e−ρ/2|C|)(1−ρ/2)m (3.19)
> |C|m · |C|−ρm/2e−ρm/2 (3.20)
= |C|ρn+log|C| x̂|C|−ρm/2e−ρm/2 (3.21)
≥ |C|ρn+log|C| x̂ · |C|−ρm (3.22)
≥ x̂ · |C|ρ(n−m) = x̂ · 2Ω(n). (3.23)

Here the second line uses the identity 1 − ρ/4 ≥ e−ρ/2, which holds as ρ < 1
256 < 1 (3.4).

The third line regroups and drops a factor of exp(ρ2m/4). The fourth line substitutes
m = ⌈ρn + log|C| x̂⌉ according to its definition (3.3), and the fifth line uses the fact that
e < 3 ≤ |C|.

On the other hand, by Claim 1 and substitution for m using (3.3), we have

|L(x⃗[m])| ≤ |C|m · 2|C|−2ρn = x̂ · 2|C|−ρn+1 < x̂ (3.24)

by Claim 1. Combining (3.18) and (3.24) yields

|§(x⃗[m]) \ L(x⃗[m])| = x̂ · 2Ω(n),

which contradicts the fact that Z\L(x⃗[m]) spans a range of only εnx̂/4 integers by definition
(3.6).

Thus our assumption is false and there exists a length-x̂ interval I with |I ∩ (§(x⃗) \
L(x⃗))| ≥ γx̂ with probability 1 − e−Ω(n). This finishes the proof of the Dense Interval
Lemma.

Proof of Lemma 12 (Interval Shifting Lemma)

Finally, we prove that, given a γ-dense length-x̂ interval not too far from the origin, drawing
an additional m′ −m inputs ensures that we occupy a γ-fraction of an interval containing τ
with very high probability.

Proof of Lemma 12. Let x⃗ ∈ [0 : x̂−1]m be a vector and I = [α, α+ x̂] be a length-x̂ interval
such that

J := I ∩ (§(x⃗) \ L(x⃗))

44

Tim Randolph Columbia University

satisfies
|J | ≥ γx̂. (3.25)

Because I is is γ-dense in elements within Z \ L(x⃗), we can assume that

I ⊆ Z \ L(x⃗) ⊆
[
−ε8nx̂,

ε

8nx̂
]

without loss of generality.
Assume without loss of generality that τ ̸∈ I and α > τ . Since τ = o(x̂n) by assumption,

we have
α− τ ≤

(
ε

8 + o(1)
)
nx̂.

.
Now consider the sequence of random variables xm+1, . . . ,xm′ ∼ [0 : x̂− 1]. The expec-

tation of the sum of these variables is given by

E

 ∑
i∈[m+1:m′]

xi

 = x̂− 1
2 · (m′ −m) > ε

5nx̂,

as
m′ −m >

ε

2n

by (3.5). Furthermore, because the random variables are independent, we have that∑
i∈[m+1:m′]

xi > nx̂ · ε6 (3.26)

with probability 1−e−Ω(n) by a Hoeffding bound. In other words, the sum of m′−m random
inputs is greater than the distance from α to τ with very high probability.

Conditioning on (3.26), let ℓ be the smallest index satisfying∑
i∈[m+1:ℓ]

xi > α− τ

and write
β :=

∑
i∈[m+1:ℓ]

xi

to simplify notation. Thus
τ ∈ [α− β : α− β + x̂].

We claim that §(x⃗ ◦ xm+1 ◦ · · · ◦ xm′) occupies at least a γ-fraction of a length-x̂ interval
containing τ . To see this, consider what happens when we assign the −1 coefficient to the
variables xm+1, . . . ,xℓ, effectively translating §(x⃗) by β. We have

J − β ⊆ [α− β : α− β + x̂] ∩ §(x⃗ ◦ xm+1 ◦ · · · ◦ xm′).

This completes the proof of the lemma.

45

Tim Randolph Columbia University

3.2.2 When Solutions Occur in the C = [±d] Case
The C = {±1} case has been studied in previous work by Borgs, Chayes and Pittel [BCP01].
Their results precisely determine the parameters of a phase transition within a subexponen-
tial window around 2n/

√
n and prove that solutions exist with probability 1 − o(1) for x̂

below the window and with probability o(1) above. For our purposes, precisely pinning
down the phase transition window is less important than establishing regions within which
solutions are either very likely or very unlikely to exist, so we present a corollary of their
analysis ([BCP01, Theorem 2.1]) which features a larger window but more flexibility in the
offset.

Corollary 3 (GSS Solution Probability on [±1] [BCP01]). Let C = [±1] and fix any posi-
tive constant ε > 0. For x⃗ ∼ [0 : x̂− 1]n and any integer τ satisfying |τ | = o(x̂n), we have

Pr
x⃗

[∃ c⃗ ∈ Cn : x⃗ · c⃗ ∈ {τ, τ + 1}]
≥ 1− o(1) if x̂ ≤ |C|(1−ε)n

≤ 2|C|n
/
x̂ if x̂ ≥ |C|n.

(Note that x⃗ · c⃗ has the same parity as ∑i∈[n] xi for every c⃗ ∈ [±1]n, so the parity of ∑i∈[n] xi

determines a single possible target in {τ, τ + 1}.)

Proof. Upper Bound. Let C = [±1]. We first consider the upper bound when x̂ ≥ |C|n =
2n. Given any fixed c⃗ ∈ Cn, conditioned on any values for x1,x2, . . . ,xn−1, the probability
that xn is such that x⃗ · c⃗ ∈ {τ, τ + 1} is at most 2/x̂. Union-bounding over all coefficient
vectors gives the result.

Lower Bound. Let C = [±1] and fix x̂ ≤ |C|(1−ε)n = 2(1−ε)n for some ε > 0. We start with
the case in which |τ | ≤ x̂ and then extend our analysis to all τ such that |τ | = o(x̂n).

Fix a target τ such that |τ | ≤ x̂. Let Zn,τ denote the expected number of solutions
c⃗ ∈ Cn of c⃗ · x⃗ = τ over x⃗ ∼ [0 : x̂− 1]n.

In this case, [BCP01] Proposition 3.1 together with x̂ ≤ 2(1−ε)n implies the following
bounds on Zn,τ :

E [Zn,τ] = ρn(1 +O(n−1)) and

E
[
Z2

n,τ

]
= 2ρ2

n(1 +O(n−1)).

where ρn is defined as

ρn :=
√

3
2πn ·

2n

x̂
.

Note that we cannot directly apply Chebyshev’s inequality to obtain concentration of Zn,τ

because of the extra factor of 2 in E[Zn,τ]2. (The factor of 2 is there because of the obser-
vation that Zn,τ can have a solution only when the sum of x⃗ is even, which happens with
probability 1/2 over x⃗.)

46

Tim Randolph Columbia University

Since we are interested in the probability that there exists c⃗ ∈ Cn with c⃗ · x⃗ ∈ {τ, τ + 1},
we have

E [Zn,τ + Zn,τ+1] = 2ρn(1 +O(n−1)) and

E
[
(Zn,τ + Zn,τ+1)2

]
= 4ρ2

n(1 +O(n−1)).

Here, the second line uses the fact that E[Zn,τ Zn,τ+1] = 0, because for any fixed x⃗ and τ , it
is impossible to have a solution solution for both τ and τ + 1 due to parity. It follows from
Chebyshev’s inequality that

Prx⃗[∃c⃗ ∈ Cn | x⃗ · c⃗ ∈ {τ, τ + 1}] = 1− o(1) (3.27)

It remains to consider the larger target range |τ | = o(nx̂) as in the theorem statement.
Without loss of generality, consider τ > 0 and consider the experiment in which we sample
the input elements x1,x2, . . . , one by one and assign each the coefficient−1. Each step of this
process effectively creates a new instance with one fewer input element and a smaller target
τ ′. It is a simple exercise to show that for some τ = o(nx̂), our new instance satisfies τ ′ ≤ x̂
with high probability after o(n) steps.5 Because the new GSS instance has n′ ≥ (1− ε/2)n
elements with high probability, applying (3.27) for τ = τ ′ completes the proof of the lower
bound.

With some effort, the proof of [BCP01] can be extended to the case of [±d] for d > 1:

Theorem 4 (GSS Solution Probability for [±d], d > 1). Let C = [±d] for a fixed integer
d > 1 and fix any constant ε > 0. For x⃗ ∼ [0 : x̂ − 1]n and any integer τ satisfying
|τ | = o(x̂n), we have

Pr
x⃗

[∃ c⃗ ∈ Cn : x⃗ · c⃗ = τ]
≥ 1− o(1) if x̂ ≤ |C|(1−ε)n

≤ |C|n
/
x̂ if x̂ ≥ |C|n.

Together, Corollary 3 and Theorem 4 cover all d ≥ 0. (Note the slight differences between
the statements due to parity in the d = 1 case.)

Here the challenge is again to prove the lower bound; the proof of the upper bound
on solution probability is trivial and follows the same argument as that in the proof of
Theorem 3.

To do so, fix a coefficient set C = [±d] for a fixed constant d > 1 and a range bound
x̂ = O∗(|C|(1−ε)n) with respect to a small fixed constant ε > 0. We begin by introducing the
quantity

ρn := |C|n+1/2

x̂
√

2πnκ∑c∈C c2
(3.28)

5In fact, this is the same “Interval Shifting” technique as in Lemma 12.

47

Tim Randolph Columbia University

where
κ := E

xi∼[0:x̂−1]

[
x2

i

x̂2

]
= 1

3 −
1
2x̂ + 1

6x̂2 . (3.29)

Because |C| is a fixed constant and κn ≈ 1
3 , we have

ρn = Θ
(
|C|n

x̂
√
n

)
. (3.30)

Moreover, because x̂ = O∗(|C|(1−ε)n) by assumption, we also have

ρn = |C|Ω(n). (3.31)

The bulk of the proof consists in demonstrating that the number of solutions for a random
GSS instance x⃗ ∼ [0 : x̂− 1]n is close to ρn with high probability.

Now, let
Z := Z(x̂, C, τ) (3.32)

be a random variable that counts the number of solution vectors c⃗ ∈ Cn for a random GSS
instance x⃗ ∼ [0 : x̂− 1]n with target value |τ | = O(x̂). Note here that in the definition of Z,
we consider a smaller range of τ than in the statement of Theorem 4 (i.e., O(x̂) as opposed
to o(nx̂)); this is for convenience in the proofs of Lemmas 13 and 14 and is addressed in the
proof of Theorem 4 below.

Our proof of the lower bound on solution probability when x̂ = O∗(|C|(1−ε)n) generalizes
Proposition 3.1 of [BCP01], and consists of three parts:

1. Lemma 13 bounds the first moment of Z. We prove that Ex⃗[Z] = ρn · (1± on(1)).

2. Lemma 14 bounds the second moment of Z. We prove that Ex⃗[Z2] ≤ ρ2
n · (1 + on(1)).

3. The proof of Theorem 4 uses the preceding lemmas to conclude that Z = ρn ·(1±on(1))
with probability 1− on(1). The bound for x̂ = O∗(|C|(1−ε)n) follows.

The first two steps are accomplished by expressing Z and Z2 as integrals written in
terms of certain functions, g : [−π, π] → R and G : [−π, π]2 → R respectively, to the nth
power. In both cases, we show that the mass of the function is highly concentrated in a
region near the origin and tightly bound the value of the function in this region. Precisely,
we define

g(θ) :=
∑
c∈C

f(cθ) (3.33)

and
G(θ1, θ2) :=

∑
(c1,c2)∈C2

f(c1θ1 + c2θ2), (3.34)

48

Tim Randolph Columbia University

(a) f with x̂ = 8, C = [±2].

(b) g with x̂ = 8, C = [±2].

Figure 3.4: Example plots of f and g. As |C| increases, so does the complexity of the
oscillation.

where f : [−π, π]→ R6 denotes the helper function

f(θ) := E
xi∼[0:x̂−1]

[cos(θxi)] (3.35)

= 1
x̂

∑
j∈[0:x̂−1]

cos(jθ) (3.36)

= 1
x̂

(
sin((x̂− 1/2)θ)

2 sin(θ/2) + 1
2

)
. (3.37)

In order to provide a rough intuition for the reader, f and g are plotted in Figure 3.4.
f is a symmetric waveform that takes a large positive value near 0 and whose amplitude
declines as the argument increases. g is more complicated, but shares the property that the

6Our function f is defined almost identically to the function f that occurs in the proof of [BCP01,
Proposition 3.1]. The only difference is that [BCP01] consider inputs drawn uniformly from the set [x̂], while
we consider inputs drawn uniformly from the set [0 : x̂−1]. (3.37) corresponds to [BCP01, Equation (3.11)].

49

Tim Randolph Columbia University

maximum over [−π, π] appears at the origin. The interval close to the origin thus contains
most of the mass of the functions fn and gn. Finally, the function G (two arguments, not
plotted) is similar to g in several important respects but requires closer consideration; see
further discussion in the proof of Lemma 14.

Proof of Theorem 4 (Assuming Lemmas 13 and 14).
Upper Bound. As in the proof of Theorem 3, fix a coefficient vector c⃗ ∈ Cn \ {⃗0} and
let i∗ ∈ [n] be an index such that ci∗ ̸= 0. Conditioning on any outcome of x⃗[n]\{i} from
[0 : x̂ − 1]n−1, x⃗ · c⃗ = τ occurs with probability at most 1/x̂ over the selection of xi.
Union-bounding over all c⃗ ∈ Cn \ {⃗0} gives the claimed upper bound of |C|n/x̂.

Lower Bound. Consider the quantity ∣∣∣∣∣Zρn

− 1
∣∣∣∣∣ ,

which captures the multiplicative difference between ρn and the number of solutions Z of a
random GSS instance.

We have

E⃗
x

[∣∣∣∣∣Zρn

− 1
∣∣∣∣∣
]
≤

√√√√√E⃗
x

(Z
ρn

− 1
)2


= 1
ρn

√
E⃗
x

[Z2]− E⃗
x

[Z]2 +
(

E⃗
x

[Z]− ρn

)2

≤ 1
ρn

√
E⃗
x

[Z2]− E⃗
x

[Z]2 + 1
ρn

∣∣∣∣ E⃗
x

[Z]− ρn

∣∣∣∣
= on(1).

Here the first step holds since any random variable X satisfies E[X]2 ≤ E[X 2], the second
step is elementary algebra, the third step holds since

√
a+ b ≤

√
a+
√
b for any a, b ∈ R≥0,

and the last step uses Lemmas 13 and 14 to bound Ex⃗[Z] and Ex⃗[Z2], respectively.
Our instance has a solution unless Z = 0, or, as a necessary condition, unless∣∣∣∣∣Zρn

− 1
∣∣∣∣∣ ≥ 1,

which occurs with probability at most o(1) by applying Markov’s inequality to the expecta-
tion.

Fix C = [±d] and x̂ = O∗(|C|(1−ε)n) for some constant ε > 0. Now, over the small range
|τ | = O(x̂), we can conclude that

Prx⃗ [∃c⃗ ∈ Cn : x⃗ · c⃗ = τ] = 1− o(1). (3.38)

50

Tim Randolph Columbia University

It remains to consider the larger target range |τ | = o(nx̂), as in the theorem statement.
Without loss of generality, consider τ > 0 and consider the experiment in which we sample
the input elements x1,x2, . . . , one by one and assign each the coefficient −1. Each step of
this process effectively creates a new instance with one fewer input element and a smaller
target τ ′. It is a simple exercise to show that when τ = o(nx̂), our new instance satisfies
τ ′ = O(x̂) with high probability after o(n) steps.7 Applying (3.38) for τ = τ ′ completes the
proof of the lower bound.

3.2.3 Expectation of Z
Lemma 13 (Expectation of Z. Fix a coefficient set C = [±d], x̂ = O∗(|C|(1−ε)n) for some
constant ε > 0, and a target τ = O(x̂). For ρn, f and g defined as in (3.28), (3.37) and
(3.33), we have

E⃗
x

[Z] = 1
2π

∫ π

−π
cos(τθ) · g(θ)n · dθ = ρn · (1± on(1)).

For any choice of x⃗ ∼ [0 : x̂− 1]n, we observe that

Z =
∑

c⃗∈Cn

1
2π

∫ π

−π
eiθ(x⃗·⃗c−τ) · dθ

= 1
2π

∫ π

−π
e−iθτ

∑
c⃗∈Cn

 ∏
j∈[n]

eiθcjxj

 · dθ
= 1

2π

∫ π

−π
e−iθτ

∏
j∈[n]

(∑
c∈C

eiθcxj

)
· dθ,

where the first step chooses an integral to act as an indicator for the event that x⃗ · c⃗ = τ ,
the second step factors the dot product x⃗ · c⃗, and the last step exchanges the sum and the
product (which is enabled by the special form of the integrand).

We note that ∑
c∈C

eicθxj =
∑
c∈[d]

(eicθxj + e−icθxj)

=
∑
c∈[d]

2 cos(cθxj)

=
∑
c∈C

cos(cθxj),

7In fact, this is the same “Interval Shifting” technique as in Lemma 12.

51

Tim Randolph Columbia University

by the fact that C = [±d], Euler’s formula, and cancelling sines. Applying this identity
allows us to simplify our equation for Z to

Z = 1
2π

∫ π

−π
cos(τθ)

∏
j∈[n]

(∑
c∈C

cos(cθxj)
)
· dθ. (3.39)

Since the variables xj ∼ [0 : x̂− 1] for j ∈ [n] are independent and identically distributed.,
we can break down the expectation Ex⃗[Z] as follows:

E⃗
x

[Z] = 1
2π

∫ π

−π
cos(τθ) ·

(
E

xi∼[0:x̂−1]

[∑
c∈C

cos(cθxi)
])n

dθ

= 1
2π

∫ π

−π
cos(τθ) · g(θ)n · dθ,

where the last step follows by the definitions of f (3.37) and g (3.33). Later we will see that
the mass of this integral is highly concentrated around the origin, where cos(τθ)·g(θ)n ≈ |C|n.

Fix any constants a and b satisfying

|C|2

ε
< a < b, (3.40)

and define the quantity

b0 := 2x̂ · sin−1
(
b

2x̂

)
, (3.41)

which satisfies

b ≤ b0 ≤ b · π2 (3.42)

by elementary trigonometric reasoning.
To evaluate the expectation Ex⃗[Z], we follow the approach of [BCP01] and divide the

integral into the following three parts:8

E⃗
x

[Z] = 1
2π

∫
|θ|≤

√
64 ln(n)/n

x̂

cos(τθ) · g(θ)n · dθ (Part I)

+ 1
2π

∫
|θ|∈
[√

64 ln(n)/n

x̂
,

b0
x̂

] cos(τθ) · g(θ)n · dθ (Part II)

8By (3.42), we have that
b0

x̂
≤ (π/2) · b

8d · b
≤ π

16 ,

so the interval of integration is well defined.

52

Tim Randolph Columbia University

+ 1
2π

∫
|θ|∈
[

b0
x̂

, π

] cos(τθ) · g(θ)n · dθ. (Part III)

(Part I) integrates the function close to the origin, where almost all the mass is concentrated,
while (Part III) integrates the function far from the origin, where there is very little mass.
(Part II) bounds a small intermediate region where the mass of the function is still small
but not small enough for the rough methods that suffice for (Part III).

Claims 3 to 5 below bound (Part I), (Part II), and (Part III) respectively. Combining
them completes the proof of Lemma 13.

Proof of Lemma 13. By Claims 3 to 5, we have

E⃗
x

[Z] = (Part I) + (Part II) + (Part III)

∈ (Part I) ± (|(Part II)| + |(Part III)|)
= ρn · (1± on(1)).

We complete the proofs by bounding the size of (Part I), (Part II), and (Part III).
Claim 3. (Part I) = ρn(1± o(1)).
Proof. Following [BCP01], we set

y := x̂θ

and consider |y| ≤
√

64 ln(n)/n = on(1). In this range, we observe that

f(θ) = f
(
y

x̂

)
= E

xi∼[0:x̂−1]

[
cos

(
xi ·

y

x̂

)]

= E
xi∼[0:x̂−1]

[
1− x2

i

2

(
y

x̂

)2
±O(y4)

]

= 1− κ

2y
2 ±O(y4)

=
(

1− κ

2y
2
)
· (1±O(y4)), (3.43)

where the second step uses the Taylor series approximation

cos(z) = 1− 1
2z

2 ±O(z4), (3.44)

the third step follows from the definition of κ (3.29), and the last step converts the (additive)
error term into a multiplicative form. Using a similar argument, we can also write

g(θ) = g
(
y

x̂

)

53

Tim Randolph Columbia University

=
∑
c∈C

f
(
c · y
x̂

)

=
(
|C| − κ

2

(∑
c∈C

c2
)
y2
)
· (1±O(y4))

= |C| · exp
(
− κ

2|C|

(∑
c∈C

c2
)
y2
)
· (1±O(y4)), (3.45)

where the last step uses the Taylor series approximation

e−z = 1− z ±O(z2).

Taking (3.45) to the power of n, it follows that

g
(
y

x̂

)n

= |C|n · exp
(
− nκ

2|C|

(∑
c∈C

c2
)
y2
)
· (1±O(ny4)). (3.46)

Based on (3.46), we can evaluate (Part I) as follows:

(Part I) = 1
2πx̂

∫
|y|≤
√

64 ln(n)/n
cos

(
τ · y

x̂

)
· g
(
y

x̂

)n

· dy

= 1
2πx̂

∫
|y|≤
√

64 ln(n)/n
(1±O(y2)) · g

(
y

x̂

)n

· dy

= |C|
n

2πx̂

∫
|y|≤
√

64 ln(n)/n
(1±O(y2 + ny4)) · exp

(
− nκ

2|C|

(∑
c∈C

c2
)
y2
)

dy

= |C|
n

2πx̂ · (1± on(1)) ·
∫

|y|≤
√

64 ln(n)/n
exp

(
− nκ

2|C|

(∑
c∈C

c2
)
y2
)

dy

= |C|
n

2πx̂ · (1± on(1)) ·

√√√√ 2π|C|
nκ
∑

c∈C c2 · erf
√√√√32κ
|C|

(∑
c∈C

c2

)
ln(n)


= ρn · (1± on(1)) · erf

√√√√32κ
|C|

(∑
c∈C

c2

)
ln(n)

 . (3.47)

Here the first step changes variables by substituting y for x̂θ. The second step follows from
(3.44) and |τ | = O(x̂). The third step substitutes (3.46). The fourth step follows from the
fact that O(y2 + ny4) = on(1) when |y| ≤

√
64 ln(n)/n. The fifth step resolves the integral

by using the Gaussian error function

erf(z) = 2√
π

∫ z

0
e−t2dt. (3.48)

54

Tim Randolph Columbia University

The last step uses the definition of ρn (3.28).
To finish the proof of Claim 3, it remains to quantify the Gaussian error function erf(z).

It is known that |1 − erf(z)| ≤ e−z2 for any z ∈ R≥0 (e.g., [CCM11], Theorem 1). As a
consequence, we have

erf
√√√√32κ
|C|

(∑
c∈C

c2

)
ln(n)

 = 1± n−32κ|C|−1(
∑

c∈C
c2) (3.49)

= 1± n−32κ (3.50)
= 1± on(1), (3.51)

where the second step holds because |C|−1(∑c∈C c
2) ≥ 1 and the last step holds because

κ = Ωn(1) (3.29). Substituting into (3.47) completes the proof of Claim 3.

Claim 4. |(Part II)| = o(ρn).

Proof. Once again we set
y := x̂θ.

Recall that (Part II) considers the range

|θ| ∈


√

64 ln(n)/n
x̂

,
b0

x̂

 ,
or equivalently,

|y| ∈

√64 ln(n)
n

, b0

 .
In this range, it turns out that

|f(cθ)| =
∣∣∣∣f (c · yx̂

)∣∣∣∣
≤ 1

n
√
n
, (3.52)

for any (nonzero) coefficient c ∈ C. Assuming the truth of (3.52) for the moment, we have

|g(θ)| =
∣∣∣∣g (yx̂

)∣∣∣∣ (3.53)

≤
∑
c∈C

∣∣∣∣f (c · yx̂
)∣∣∣∣ (3.54)

≤ |C|
n
√
n
, (3.55)

55

Tim Randolph Columbia University

for any |y| ∈ [
√

64 ln(n)/n, b0]. Hence, the magnitude of (Part II) is at most

|(Part II)| =
∣∣∣∣∣ 1
2πx̂

∫
|y|∈[
√

64 ln(n)/n, b0]
cos

(
t · y
x̂

)
· g
(
y

x̂

)n

· dy
∣∣∣∣∣

≤ 1
2πx̂ · 2b0 ·

 max
|y|∈[
√

64 ln(n)/n, b0]

∣∣∣∣g (yx̂
)∣∣∣∣
n

≤ 1
2πx̂ · 2b0 ·

|C|n

n

= b0|C|n

πx̂n
= o(ρn),

where the first step changes variables using the equality y = x̂θ, the third step applies (3.53),
and the last step holds since b0 ≤ π

2 · b is a constant (3.41) and ρn = Θ(|C|n
x̂

√
n
) (3.28).

It remains to verify (3.52). Before doing so, we observe that for any |y| ≤ b0,∣∣∣∣ cy2x̂
∣∣∣∣ ≤ |c| · b0

2x̂

≤ |c| · (π/2) · b
16d · b

≤ |c| · (π/32)
d

≤ π

32 , (3.56)

where the second step holds because b0 ≤ (π/2) · b (3.42) and the last step holds because
c ∈ C = [±d].

Thus for any |y| ≤ b0, we can upper-bound |f(cθ)| as follows.

|f(cθ)| =
∣∣∣∣f (cyx̂

)∣∣∣∣
=
∣∣∣∣sin(cy − cy/(2x̂))

2x̂ sin(cy/(2x̂)) + 1
2x̂

∣∣∣∣
=
∣∣∣∣ sin(cy)
2x̂ tan(cy/(2x̂)) + 1− cos(cy)

2x̂

∣∣∣∣
≤
∣∣∣∣sin(cy)

cy

∣∣∣∣+ 1− cos(cy)
2x̂

≤
∣∣∣∣sin(cy)

cy

∣∣∣∣+ 1− cos(cy)
40 . (3.57)

56

Tim Randolph Columbia University

Here the first step changes variables by substituting y for x̂θ. The second step applies the
identity

sin(α− β) = sin(α) cos(β)− sin(β) cos(α).
The third step holds since | tan(z)| ≥ |z| for any |z| ≤ π

2 , and∣∣∣∣ cy2x̂
∣∣∣∣ ≤ π

4 ≤
π

2 ,

by(3.56).
We prove (3.52) for any nonzero c ∈ C and any |y| ∈ [

√
64 ln(n)/n, b0] in two cases.

Case I:
√

64 ln(n)/n ≤ |y| ≤ π
2|c| . By substituting Taylor series, we have that | sin(z)/z| ≤

e−z2/6 for any |z| ≤ π
2 and cos(z) ≥ 1− 1

2z
2 (3.44). Applying both facts to (3.57) gives

|f(cθ)| =
∣∣∣∣f (c · yx̂

)∣∣∣∣
≤
∣∣∣∣sin(cy)

cy

∣∣∣∣+ 1− cos(cy)
40

≤ e− 1
6 c2y2 + 1

80c
2y2

≤ e− 1
8 c2y2

≤ e− 1
8 y2

≤ 1
n
√
n
,

where the third step holds since

e−z2/6 + 1
80z

2 ≤ e−z2/8

for any |z| ≤ π
2 , the fourth step holds since c ∈ C is a nonzero integer, and the last step

holds when |y| ≥
√

64 ln(n)/n.
Case II: π

2|c| ≤ |y| ≤ b0. Following (3.57), in this range we have

|f(cθ)| =
∣∣∣∣f (c · yx̂

)∣∣∣∣
≤
∣∣∣∣sin(cy)

cy

∣∣∣∣+ 1− cos(cy)
40

≤ | sin(cy)|
π/2 + 1 + | cos(cy)|

40

57

Tim Randolph Columbia University

≤ 2
π

+ 1
20

≤ 1
n
√
n
, (3.58)

where the second step applies |y| ≥ π
2|c| , the third step holds because | sin(cy)| ≤ 1 and

| cos(cy)| ≤ 1, and the last step holds because 2
π

+ 1
20 ≈ 0.6866 and 1

n√n
= 1− on(1).

Combining both cases together gives (3.52) and completes the proof of Claim 4.

Claim 5. |(Part III)| = o(ρn).

Proof. Recall that (Part III) considers the range |θ| ∈ [b0
x̂
, π], in which we have

|f(θ)| =
∣∣∣∣∣1x̂
(

sin((x̂− 1/2)θ)
2 sin(θ/2) + 1

2

)∣∣∣∣∣ (3.59)

≤ 1
b

+ 1
2x̂ (3.60)

≤ 1
a
. (3.61)

Here the first inequality holds as | sin((x̂− 1/2)θ)| ≤ 1 and∣∣∣∣∣sin
(
θ

2

)∣∣∣∣∣ ≥
∣∣∣∣∣sin

(
b0

2x̂

)∣∣∣∣∣ = b

2x̂

by (3.42).
For any c ∈ C and |θ| ∈ [b0

x̂
, π], we know from (3.37) that

|f(cθ)| =
∣∣∣∣∣ E
xi∼[0:x̂−1]

[cos(cθxi)]
∣∣∣∣∣ ≤ 1

(as |C| ≥ 2 · |[±1]| = 4). Applying this fact and (3.59), for any |θ| ∈ [b0
x̂
, π] we have

|g(θ)| ≤ |f(θ)|+ |f(−θ)|+
∑

c∈C\{±1}
|f(cθ)| (3.62)

≤ 2
a

+ (|C| − 2) (3.63)

= |C|(1−ε1) (3.64)

for some constant ε1 := ε1(|C|, a) ∈ (0, 1), where the last step holds by the definition of a
(3.40). Further, we know that for any integer c ∈ C the function fc(θ) := f(cθ) is 2π-periodic
(3.37). Thus (3.59) implies that∣∣∣∣{θ ∈ [−π, π] : |f(cθ)| > 1

a

}∣∣∣∣ ≤ 2b0

x̂
. (3.65)

58

Tim Randolph Columbia University

This, given that g(θ) = ∑
c∈C f(cθ), further gives∣∣∣∣{θ ∈ [−π, π] : |g(θ)| > |C|

a

}∣∣∣∣ ≤ 2b0|C|
x̂

. (3.66)

By considering separately the subregion on which |C|/a < |g(θ)| ≤ |C|(1−ε1) and the
subregion on which |g(θ)| ≤ |C|/a, the magnitude of (Part III) is at most

|(Part III)| =
∣∣∣∣∣ 1
2π

∫
|θ|∈[b0

x̂
, π]

cos(τθ) · g(θ)n · dθ
∣∣∣∣∣

≤ 1
2π

∫
|θ|∈[b0

x̂
, π]
|g(θ)|n · dθ

≤ 1
2π

(
|C|(1−ε1)n · 2b0|C|

x̂
+
(
|C|
a

)n

· 2π
)

= O

(
|C|(1−ε1)n

x̂

)
+O

(
1
|C|n

)
, (3.67)

where the third step applies (3.62) and (3.66), and the fourth step holds since (for the first
term) both b0 and |C| are constants and (for the second term) a > |C|2/ε > |C|2 (3.40).

Recall that ρn = |C|Ω(n) (3.31). Thus the two terms of (3.67) are upper-bounded by

O

(
|C|(1−ε1)n

x̂

)
= ρn ·O(

√
n · |C|−ε1n) = o(ρn)

and
O(|C|−n) = on(1) = o(ρn),

respectively. This completes the proof of Claim 5.

3.2.4 Upper Bound on the Second Moment of Z
Lemma 14 (Second Moment of Z). Fix a coefficient set C = [±d], x̂ = O∗(|C|(1−ε)n) for
some constant ε > 0, and a target τ = O(x̂). For ρn, f and G defined as in (3.28), (3.37),
and (3.34) we have

E⃗
x

[Z2] ≤ 1
4π2

∫ π

−π

∫ π

−π
|G(θ1, θ2)|n · dθ1dθ2

≤ ρ2
n · (1 + on(1)).

Squaring our identity for Z (3.39) yields

Z2 =
 1

2π

∫ π

−π
cos(τθ)

∏
j∈[n]

(∑
c∈C

cos(cθxj)
)
· dθ

2

59

Tim Randolph Columbia University

= 1
4π2

∫ π

−π

∫ π

−π
cos(τθ1) cos(τθ2)

∏
j∈[n]

 ∑
(c1,c2)∈C2

cos(c1θ1xj) cos(c2θ2xj)
 · dθ1dθ2

≤ 1
4π2

∫ π

−π

∫ π

−π

∏
j∈[n]

∣∣∣∣∣ ∑
(c1,c2)∈C2

cos(c1θ1xj) cos(c2θ2xj)
∣∣∣∣∣ · dθ1dθ2

= 1
4π2

∫ π

−π

∫ π

−π

∏
j∈[n]

∣∣∣∣∣ ∑
(c1,c2)∈C2

(cos(c1θ1xj) cos(c2θ2xj)− sin(c1θ1xj) sin(c2θ2xj))
∣∣∣∣∣ · dθ1dθ2

= 1
4π2

∫ π

−π

∫ π

−π

∏
j∈[n]

∣∣∣∣∣ ∑
(c1,c2)∈C2

cos(c1θ1xj + c2θ2xj)
∣∣∣∣∣ · dθ1dθ2,

where in the second to last line, adding the sin term does not change the equation because
C = [±d] is a symmetric set and sin(z) is an odd function, and in the last line, we use the
identity

cos(α) cos(β)− sin(α) sin(β) = cos(α + β).
Since all the xj ∼ [0 : x̂ − 1] are independent and identically distributed, the following

holds for the second moment Ex⃗[Z2]:

E⃗
x

[Z2] ≤ 1
4π2

∫ π

−π

∫ π

−π

∣∣∣∣∣ ∑
(c1,c2)∈C2

E
xi∼[0:x̂−1]

[cos(c1θ1xi + c2θ2xi)]
∣∣∣∣∣
n

· dθ1dθ2

= 1
4π2

∫ π

−π

∫ π

−π

∣∣∣∣∣ ∑
(c1,c2)∈C2

f(c1θ1 + c2θ2)
∣∣∣∣∣
n

· dθ1dθ2

= 1
4π2

∫ π

−π

∫ π

−π
|G(θ1, θ2)|n · dθ1dθ2, (3.68)

where the second and third steps substitute f and G using their definitions (3.37) and (3.34).
Remark 2. We will show that the mass of (3.68) is concentrated around the origin, where
|G(θ1, θ2)|n ≈ |C|2n. Notably, this is not true when C = [±1], as considered in [BCP01].
In the C = [±1] case, mass is also concentrated at the points [±π,±π], the corners of the
region of integration. This is because in the C = [±1] case the function G consists of four
summands that interfere constructively at these points. However, when C = [±d] for any
d > 1, interference from other summands ensures that mass is not concentrated at [±π,±π].

We reuse the constants a, b and b0 satisfying (3.40)

(i.e, |C|
2

ε
< a < b),

and (3.42)
(i.e, b ≤ b0 ≤ b · π2),

60

Tim Randolph Columbia University

which were previously introduced in the proof of Lemma 13. Define the subregions R′
θ ⊆

R′′
θ ⊆ [−π, π]2 by letting

R′
θ :=

−
√

64 ln(n)
x̂
√
n

,

√
64 ln(n)
x̂
√
n

2

and

R′′
θ :=

[
−b0

x̂
,
b0

x̂

]2

.

Similar to the approach of [BCP01], we split the formula (3.68) into the following three parts.

E⃗
x

[Z] ≤ 1
4π2

∫∫
(θ1,θ2)∈R′

θ

|G(θ1, θ2)|n · dθ1dθ2 (Part 1)

+ 1
4π2

∫∫
(θ1,θ2)∈R′′

θ
\R′

θ

|G(θ1, θ2)|n · dθ1dθ2 (Part 2)

+ 1
4π2

∫∫
(θ1,θ2)∈[−π, π]2\R′′

θ

|G(θ1, θ2)|n · dθ1dθ2. (Part 3)

Once again, (Part 1) integrates the function close to the origin, where almost all the mass is
concentrated, (Part 3) integrates the function far from the origin, where there is very little
mass, and (Part 2) bounds a small intermediate region.

We evaluate (Part 1) and (Part 2) respectively in Claims 6 and 7. (Part 3) is rather
tricky; we first prove three auxiliary results (Claims 8 to 10) and then evaluate it in Corol-
lary 4.

Claim 6. (Part 1) = ρ2
n · (1± on(1)).

Proof. (This proof is analogous to the proof of Claim 3.) Following [BCP01], we define two
variables

y1 := x̂θ1 and
y2 := x̂θ2.

Thus, for (θ1, θ2) ∈ R′
θ, we have

|y1|, |y2| ≤

√
64 ln(n)
n

= on(1).

In this range,

G
(
y1

x̂
,
y2

x̂

)
=

∑
(c1,c2)∈C2

f
(
c1
y1

x̂
+ c2

y2

x̂

)

61

Tim Randolph Columbia University

=
∑

(c1,c2)∈C2

(
1− κ

2 (c1y1 + c2y2)2
)
· (1±O(y4

1 + y4
2))

=
(
|C|2 − |C| · κ

∑
c∈C c

2

2 · (y2
1 + y2

2)
)
· (1±O(y4

1 + y4
2))

= |C|2 · exp
(
−κ

∑
c∈C c

2

2|C| (y2
1 + y2

2)
)
· (1±O(y4

1 + y4
2)),

where the first step changes the variables y1 and y2 to x̂θ1 and x̂θ2, the second step holds since
we have f(y/x̂) = (1−κ

2y
2)·(1±O(y4)) for small |y| (3.43), the third step is elementary algebra

(notice that C = [±d] is a symmetric set, so the crossing terms 2c1c2y1y2 get cancelled), and
the last step uses the Taylor series approximation e−z = (1− z) · (1±O(z2)).

As a consequence, the following holds for any |y1|, |y2| ≤
√

64 ln(n)/n:

∣∣∣∣G(y1

x̂
,
y2

x̂

)∣∣∣∣n = |C|2n · exp
(
−nκ

∑
c∈C c

2

2|C| (y2
1 + y2

2)
)
· (1±O(ny4

1 + ny4
2))

= |C|2n · exp
(
−nκ

∑
c∈C c

2

2|C| (y2
1 + y2

2)
)
· (1± on(1)). (3.69)

This allows us to bound the magnitude of (Part 1) as follows:

(Part 1) = 1
4π2x̂2

∫∫
|y1|,|y2|≤

√
64 ln(n)/n

|G(y1

x̂
,
y2

x̂
)|n · dy1dy2

= |C|
2n

4π2x̂2 · (1± on(1)) ·
∫∫

|y1|,|y2|≤
√

64 ln(n)/n
exp

(
−nκ

∑
c∈C c

2

2|C| (y2
1 + y2

2)
)
· dy1dy2

= |C|
2n

4π2x̂2 · (1± on(1)) · 2π|C|
nκ
∑

c∈C c2 · erf
√√√√32κ
|C|

(∑
c∈C

c2

)
ln(n)

2

= |C|
2n

4π2x̂2 · (1± on(1)) · 2π|C|
nκ
∑

c∈C c2 · (1± on(1))2

= ρ2
n · (1± on(1)).

Here the first step changes the variables y1 and y2 to x̂θ1 and x̂θ2. The second step substitutes
(3.69). The third step resolves the integral by using the Gaussian error function erf(z) (3.48).
The fourth step uses the approximation of erf(z) in (3.49), and the last step uses the definition
of ρn (3.28).

This completes the proof of Claim 6.

Claim 7. (Part 2) = o(ρ2
n).

62

Tim Randolph Columbia University

Proof. (This proof is analogous to the proof of Claim 4.) Once again, we set

y1 := x̂θ1 and
y2 := x̂θ2

Recall that for (Part 2) we consider the range (y1, y2) ∈ R′′
y \R′

y, where

R′
y :=

−
√

64 ln(n)
n

,

√
64 ln(n)
n

2

and

R′′
y := [−b0, b0]2.

For each pair (c1, c2) ∈ C2, we define the function

f y
c1,c2(y1, y2) := 1

2

(
f
(
c1y1

x̂
+ c2y2

x̂

)
+ f

(
c2y1

x̂
− c1y2

x̂

))
. (3.70)

This family of functions allows us to decompose the function G in a convenient way: ex-
panding G according to its definition (3.34) and regrouping, we have

|G(θ1, θ2)| =
∣∣∣∣G(y1

x̂
,
y2

x̂

)∣∣∣∣
=
∣∣∣∣∣∣

∑
(c1,c2)∈C2

f
(
c1
y1

x̂
+ c2

y2

x̂

)∣∣∣∣∣∣
=
∣∣∣∣∣∣

∑
(c1,c2)∈C2

f y
c1,c2(y1, y2)

∣∣∣∣∣∣ . (3.71)

We will soon show that for any pair (c1, c2) ∈ C2 and any point (y1, y2) ∈ R′′
y \ R′

y, we
have

|f y
c1,c2(y1, y2)| ≤

1
n
√
n2
. (3.72)

Assuming (3.72) for the moment, for any point (y1, y2) ∈ R′′
y \R′

y we have

|G(θ1, θ2)| =
∣∣∣∣∣∣

∑
(c1,c2)∈C2

f y
c1,c2(y1, y2)

∣∣∣∣∣∣
≤ |C|

2

n
√
n2
. (3.73)

63

Tim Randolph Columbia University

Hence, we can upper-bound (Part 2) as follows.

(Part 2) = 1
4π2x̂2

∫∫
y1,y2∈R′′

y \R′
y

∣∣∣∣G(y1

x̂
+ y2

x̂

)∣∣∣∣n · dy1dy2

≤ 1
4π2x̂2 · |R

′′
y | ·

(
max

y1,y2∈R′′
y \R′

y

∣∣∣∣G(y1

x̂
+ y2

x̂

)∣∣∣∣
)n

≤ 1
4π2x̂2 · |R

′′
y | ·
|C|2n

n2

= b2
0|C|2n

π2x̂2n2

= o(ρ2
n),

where the first step changes the variables y1 and y2 to x̂θ1 and x̂θ2, the third step substitutes
(3.73), the fourth step is elementary algebra (notice that |R′′

y | = 4b2
0), and the last step holds

because b0 ≤ π
2 · b (3.42) and ρn = Θ(|C|n

x̂
√

n
) (3.28).

It remains to verify (3.72). Before doing so, we observe that for any point (y1, y2) ∈
R′′

y \R′
y, ∣∣∣∣c1y1 + c2y2

2x̂

∣∣∣∣ ≤ |c1|+ |c2|
2x̂ · b0

≤ |c1|+ |c2|
16d · b ·

π

2 · b

≤ |c1|+ |c2|
d

· π4
≤ π

2 . (3.74)

where the second step holds because b0 ≤ (π
2) · b (3.42) and the last step holds because

c ∈ C = [±d]. Because (3.74) holds for any point (y1, y2) ∈ R′′
y \ R′

y, the sequence of
manipulations (3.57) can be reused as written, resulting in an analogous bound on f :∣∣∣∣f (c1

y1

x̂
+ c2

y2

x̂

)∣∣∣∣ ≤
∣∣∣∣∣sin(c1y1 + c2y2)

c1y1 + c2y2

∣∣∣∣∣+ 1− cos(c1y1 + c2y2)
40 . (3.75)

Similarly, for any point (y1, y2) ∈ R′′
y \R′

y, we have∣∣∣∣c2y1 − c1y2

2x̂

∣∣∣∣ ≤ π

2 (3.76)

and ∣∣∣∣f (c2
y1

x̂
− c1

y2

x̂

)∣∣∣∣ ≤
∣∣∣∣∣sin(c2y1 − c1y2)

c2y1 − c1y2

∣∣∣∣∣+ 1− cos(c2y1 − c1y2)
40 . (3.77)

64

Tim Randolph Columbia University

It remains to prove (3.72). To prove (3.72), we split the argument into three cases based
on the values of c1, c2, y1 and y2.

Case 1: |c1y1 + c2y2| ≥ π
2 . We deduce that

|f y
c1,c2(y1, y2)| =

1
2 ·
∣∣∣∣f (c1

y1

x̂
+ c2

y2

x̂

)
+ f

(
c2
y1

x̂
− c1

y2

x̂

)∣∣∣∣
≤ 1

2 · (RHS of (3.75) + 1)

≤ 1
2 ·
(2
π

+ 1
20 + 1

)
≤ 1

n
√
n2
,

where the second step uses (3.75) and the fact that |f(θ)| ≤ 1 for any θ ∈ R (3.37). (Here
and below, we use RHS to refer to the right-hand side of a previous equation when it is too
cumbersome to fit on the page.) The third step holds since∣∣∣∣∣sin(z)

z

∣∣∣∣∣+ 1− cos(z)
40 ≤ 2

π
+ 1

20

when |z| ≥ π
2 (following a sequence of manipulations identical to (3.58) in Claim 4, Case II),

and the last step holds since 1
2 · (

2
π

+ 1
20 + 1) ≈ 0.8433 and 1

n√
n2 = 1− on(1).

Case 2: |c2y1 − c1y2| ≥ π
2 . Here we can reapply the arguments for Case 1.

Case 3: |c1y1 + c2y2| ≤ π
2 and |c2y1 − c1y2| ≤ π

2 . Combining (3.75) and (3.77) gives

|f y
c1,c2(y1, y2)| =

1
2 ·
∣∣∣∣f (c1

y1

x̂
+ c2

y2

x̂

)
+ f

(
c2
y1

x̂
− c1

y2

x̂

)∣∣∣∣
≤ 1

2 · (RHS of (3.75) + RHS of (3.77))

≤ 1
2 ·
(
e− 1

8 (c1y1+c2y2)2 + e− 1
8 (c2y1−c1y2)2)

, (3.78)

where the third step holds because∣∣∣∣∣sin(z)
z

∣∣∣∣∣+ 1− cos(z)
40 ≤ e−z2/8

for any |z| ≤ π
2 , and by substituting using (3.74) and (3.76).

In order to bound (3.78), we will employ a geometric proof; Figure 3.5 is provided for
supporting intuition. Consider two straight lines L′ : c1z1 +c2z2 = 0 and L′′ : c2z1−c1z2 = 0.

65

Tim Randolph Columbia University

z1

z2

d′

d′′
(y1, y2)

L′ : c1z1 + c2z2 = 0

L′′ : c2z1 − c1z2 = 0

0

Figure 3.5: Illustration of the formula (3.78) ≥ |f y
c1,c2(y1, y2)|. The gray region represents

the considered range (y1, y2) ∈ R′′
y \ R′

y, where R′
y = [−

√
64 ln(n)/n,

√
64 ln(n)/n]2 and

R′′
y = [−b0, b0]2. The Pythagorean theorem guarantees that d′2 + d′′2 = y2

1 + y2
2.

By elementary algebra, we can see that the Euclidean distance d′ := d′(y1, y2) (resp. the
Euclidean distance d′′ := d′′(y1, y2)) from a given point (y1, y2) ∈ R to straight line L′ (resp.
straight line L′′) is given by

d′ = |c1y1 + c2y2|√
c2

1 + c2
2

and d′′ = |c2y1 − c1y2|√
c2

1 + c2
2

. (3.79)

Moreover, L′ and L′′ are perpendicular (by construction), so the Pythagorean theorem en-
sures that d′2 +d′′2 = y2

1 +y2
2. Accordingly, the larger distance max{d′, d′′} is lower bounded

by

max{d′, d′′} ≥ d′ + d′′

2

=
√

(d′ + d′′)2

4

=
√
d′2 + d′′2 + 2d′d′′

4

66

Tim Randolph Columbia University

>

√
y2

1 + y2
1

4 (3.80)

≥

√
32 ln(n)
n

, (3.81)

where the last step holds since

(y1, y2) /∈ R′
y =

−
√

64 ln(n)
n

,

√
64 ln(n)
n

2

.

Putting everything together results in

|f y
c1,c2(y1, y2)| ≤ (3.78) = 1

2 ·
(
e−

c2
1+c2

2
8 ·d′2 + e−

c2
1+c2

2
8 ·d′′2

)

≤ 1
2 ·
(
e− 1

4 ·d′2 + e− 1
4 ·d′′2)

≤ 1
2 ·
(
e− 1

4 ·0 + e− 1
4 ·32 ln(n)/n

)
= 1

2 ·
(

1 + 1
n
√
n8

)
,

where the first step applies (3.79), the second step follows since the coefficients c1, c2 ∈ C
are nonzero integers, and the third step applies (3.81) and the fact that min{d′, d′′} ≥ 0.

Finally, we have
1
2 ·
(

1 + 1
n
√
n8

)
≤ 1

n
√
n2

for sufficiently large n. Combining all the three cases together gives (3.72) and completes
the proof of Claim 7.

Below we use Claims 8 to 10 (as auxiliaries) to evaluate (Part 3) in Corollary 4. This
evaluation together with Claims 6 and 7 immediately gives Lemma 14.

Recall that (Part 3) bounds the integral of |G(θ1, θ2)|n over a region [−π, π]2 \ R′′
θ that

includes everything sufficiently far from the origin. In the three claims that follow, we
split [−π, π]2 \ R′′

θ further into three subregions: Claim 10 proves a strong upper bound on
|G(θ1, θ2)|n for all of [−π, π]2 outside of a small region Q′′; Claim 9 proves a larger upper
bound for all of [−π, π]2 outside of a smaller region Q′ ⊂ Q′′, and Claim 8 proves a still
larger bound on all points outside of R′′

θ ⊂ Q′. Figure 3.6 provides supporting intuition for
the argument.

67

Tim Randolph Columbia University

0−π π−π/2 π/2

R′′
θ

|C|2
a

|C|+ ε

Figure 3.6: Cartoon of |G(θ1, θ2)|n. (The figure is drawn in one dimension for simplicity
and the function plotted is arbitrary.) The region R′′

θ (darkest pink slice) is the smallest
of three nested regions and contains the part of the domain nearest the origin. Q′ ⊇ R′′

θ

(medium pink slices) denotes the larger region on which the function takes values at least
|C|2/a. Q′′ ⊇ Q′ (lightest pink slices) denotes the still larger region on which the function
takes values at least |C|+ ε.

Claim 8. There exists a constant ε2 := ε2(|C|, a) > 0 such that, for any (θ1, θ2) ∈ [−π, π]2 \
R′′

θ ,

|G(θ1, θ2)| ≤ |C|2 −
1− 1/a

2 ≤ |C|(2−ε2).

Proof. Define the function

f θ
c1,c2(θ1, θ2) := 1

2(f(c1θ1 + c2θ2) + f(c2θ1 − c1θ2)) (3.82)

for each pair (c1, c2) ∈ C2. This set of functions gives us another helpful decomposition of
G(θ1, θ2), akin to (3.70) but using the arguments θ1, θ2 in place of y1, y2. Substituting into
G, we have

|G(θ1, θ2)| =
∣∣∣∣∣∣

∑
(c1,c2)∈C2

f(c1θ1 + c2θ2)
∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑
(c1,c2)∈C2

f θ
c1,c2(θ1, θ2)

∣∣∣∣∣∣ . (3.83)

68

Tim Randolph Columbia University

R′′
θ

z1

z2

0−π π

−π

π

(a) When (c1, c2) = (1, 1)

R′′
θ

z1

z2

0−π π

−π

π

(b) When (c1, c2) = (2, 1)

Figure 3.7: Rc1,c2 := {(θ1, θ2) ∈ [−π, π]2 \R′′
θ : (c1θ1 + c2θ2), (c2θ1 − c1θ2) ∈ [− b0

x̂
, b0

x̂
]⃝} is

the intersection of the red area (on which (c1θ1 + c2θ2) ∈ [− b0
x̂
, b0

x̂
]⃝) and the blue area

(on which (c2θ1 − c1θ2) ∈ [− b0
x̂
, b0

x̂
]⃝). The subregion R′′

θ (the dashed square) is excluded
from [−π, π]2. Figures 3.7a and 3.7b respectively choose (c1, c2) = (1, 1) and (c1, c2) = (2, 1).

Because |f(θ)| ≤ 1 for any θ ∈ R by definition (3.37), we also have

|f θ
c1,c2(θ1, θ2)| ≤ 1

for any (θ1, θ2) ∈ R2. Recall also that

|f(θ)| ≤ 1
a

for any |θ| ∈ [b0
x̂
, π] (3.59) and that

b0

x̂
≤ (π/2) · b

8d · b ≤ π

16

by (3.42). Since f is 2π-periodic (3.37), only for θ within the 2π-periodic range[
−b0

x̂
,
b0

x̂

]
⃝

:=
⋃

k∈Z

[
−b0

x̂
+ 2kπ, b0

x̂
+ 2kπ

]
(3.84)

69

Tim Randolph Columbia University

can we possibly have |f(θ)| > 1
a
.

For (c1, c2) ∈ C2, we thus consider the subregion

Rc1,c2 :=
{

(θ1, θ2) ∈ [−π, π]2 \R′′
θ : (c1θ1 + c2θ2), (c2θ1 − c1θ2) ∈ [− b0

x̂
, b0

x̂
]⃝
}
. (3.85)

By (3.84), this is the only region on which both components of f θ
c1,c2 may exceed 1/a. In

other words, for any point (θ1, θ2) ∈ [−π, π]2\(Rc1,c2∪R′′
θ), we have either |f(c1θ1+c2θ2)| ≤ 1

a

or |f(c2θ1 − c1θ2)| ≤ 1
a

or both, which (together with the fact that |f(θ)| ≤ 1 for any θ ∈ R)
implies

|f θ
c1,c2(θ1, θ2)| ≤

|f(c1θ1 + c2θ2)|+ |f(c2θ1 − c1θ2)|
2

≤ 1 + 1/a
2 (3.86)

for each (c1, c2) ∈ C2, on the respective regions (θ1, θ2) ∈ [−π, π]2 \ (Rc1,c2 ∪R′′
θ).

Because G is the sum over f θ
c1,c2 for all (c1, c2) ∈ C, in order to bound G we would like

to show that there is no point on [−π, π]2 \R′′
θ on which the entire family of functions takes

a value near 1. To see this, observe that because C = [±d] for a fixed integer d > 1, G
contains both f θ

1,1 and f θ
2,1 as summands.

Evaluating f θ
1,1 shows that taking the union of the b0

x̂
-neighborhoods of the four points

(±π,±π) fully covers R1,1 (Figure 3.7a). However, taking the union of the b0
x̂

-neighborhoods
of the four points (4π

5 ,
2π
5), (−2π

5 ,
4π
5), (−4π

5 ,−
2π
5) and (2π

5 ,−
4π
5) fully covers R2,1 (Figure 3.7b).

Because b0
x̂
≤ π

16 , the two unions of neighborhoods are disjoint, and we have

R1,1 ∩R2,1 = ∅. (3.87)

Given the above arguments, we deduce that for any (θ1, θ2) ∈ [−π, π]2 \R′′
θ ,

|G(θ1, θ2)| =
∣∣∣∣∣∣

∑
(c1,c2)∈C2

f θ
c1,c2(θ1, θ2)

∣∣∣∣∣∣
≤ (|C|2 − 1) + 1 + 1/a

2

= |C|2 − 1− 1/a
2 .

Here we begin by decomposing G according to (3.82). The second step uses the fact that
the upper bound (3.86) holds for at least one of (c1, c2) = (1, 1) or (c1, c2) = (2, 1) because
of (3.87), and the fact that |f θ

c1,c2(θ1, θ2)| ≤ 1 for each pair (c1, c2) ∈ C2.
Because a > |C|2/ε > 1 by definition (3.40), there must exist some constant ε2 :=

ε2(|C|, a) > 0 such that |C|2−(1−1/a)/2 ≤ |C|(2−ε2). This finishes the proof of Claim 8.

70

Tim Randolph Columbia University

Claim 9. The subregion

Q′ :=
{

(θ1, θ2) ∈ [−π, π]2 : |G(θ1, θ2)| >
|C|2

a

}
has measure at most

|Q′| ≤ |C|2 · 4πb0

x̂
.

Proof. We begin by defining the set

Ac1,w :=
{
θ1 ∈ [−π, π] : |f(c1θ1 + w)| > 1

a

}
(3.88)

for each coefficient c1 ∈ C and each real offset w ∈ R. We can think of this set as considering
the single-dimensional cross-section of the two-dimensional function h(θ1, θ2) := f(c1θ1+c2θ2)
at c2θ2 = w, then selecting the subset of values for θ1 on which this function is large.

Written in these terms, the bound (3.65) on the set of values for which f is larger than
1/a is equivalent to the statement that, for all c1 ∈ C, we have

|Ac1,0| ≤
2b0

x̂
. (3.89)

Because f is 2π-periodic, for any integer c ∈ C, the function fc(θ) := f(cθ) is also 2π-
periodic. Thus (3.89) implies

|Ac,w| ≤
2b0

x̂
(3.90)

for any c ∈ C, w ∈ R, as |Ac,w| is defined with reference to an interval of length 2π, and the
choice of w effectively translates f . It follows that, for any pair (c1, c2) ∈ C2, we have∣∣∣∣{(θ1, θ2) ∈ [−π, π]2 : |f(c1θ1 + c2θ2)| >

1
a

}∣∣∣∣ ≤ 2π · 2b0

x̂
(3.91)

= 4πb0

x̂
. (3.92)

Recall thatG(θ1, θ2) can be written as∑(c1,c2)∈C2 f(c1θ1+c2θ2), the sum of |C|2 summands
each upper-bounded by 1. It follows from the pigeonhole principle that if |G(θ1, θ2)| > |C|2/a
on a point (θ1, θ2), we must have |f(c1θ1 + c2θ2)| > 1/a for at least one pair (c1, c2) ∈ C2.
Thus, union-bounding the measure (3.91) over all pairs (c1, c2) ∈ C2 concludes the proof of
Claim 9.

Claim 10. The subregion

Q′′ :=
{

(θ1, θ2) ∈ [−π, π]2 : |G(θ1, θ2)| > |C|+ ε
}

71

Tim Randolph Columbia University

has measure at most

|Q′′| ≤ |C|4 ·
(

2b0

x̂

)2

.

Proof. We begin by introducing another convenient decomposition of the function G. Ob-
serve that

G(θ1, θ2) =
∑

c2∈C

q(θ1, c2θ2), where

q(θ1, w) : =
∑

c1∈C

f(c1θ1 + w).

In other words, q(θ1, c2θ2) is the sum of the |C| summands of G corresponding to a certain
coefficient c1 for θ1.

This allows us to rewrite Q′′ as

Q′′ =
{

(θ1, θ2) ∈ [−π, π]2 :
∣∣∣∣ ∑

c2∈C

q(θ1, c2θ2)
∣∣∣∣ > |C|+ ε

}
.

Because q is the sum of |C| summands, each upper-bounded by 1, q is upper-bounded by
|C|. Thus for any point (θ1, θ2) ∈ Q′′, there must exist two distinct coefficients c2, c

′
2 ∈ C

such that |q(θ1, c2θ2)|, |q(θ1, c
′
2θ2)| > ε

|C| by the pigeonhole principle. In other words, Q′′ is
covered by

Q′′ ⊆
⋃

c2 ̸=c′
2∈C

Qc2,c′
2
, (3.93)

where

Qα,β :=
{

(θ1, θ2) ∈ [−π, π]2 : |q(θ1, αθ2)|, |q(θ1, βθ2)| ≥
|C|
a

}
.

This definition of Qα,β suffices because a > |C|2/ε by definition (3.40) and thus |C|
a
< ε

|C| .
It remains to show that

|Qc2,c′
2
| ≤ |C|2 ·

(
2b0

x̂

)2

(3.94)

for each pair (c2, c
′
2) ∈ C2 with c2 ̸= c′

2. (If (3.94) holds, then

|Q′′| ≤

∣∣∣∣∣∣
⋃

c2 ̸=c′
2∈C

Qc2,c′
2

∣∣∣∣∣∣
≤ |C|2 ·max

c2 ̸=c′
2

|Qc2,c′
2
|

72

Tim Randolph Columbia University

≤ |C|4 ·
(

2b0

x̂

)2

using (3.93), completing the proof of the claim.)
To show (3.94), fix a pair (c2, c

′
2) ∈ C2 such that c2 ̸= c′

2. We observe that

Qc2,c′
2

=
{

(θ1, θ2) ∈ [−π, π]2 : θ1 ∈
(
Bc2θ2 ∩Bc′

2θ2

)}
,

where
Bw :=

{
θ1 ∈ [−π, π] : |q(θ1, w)| > |C|

a

}
.

Intuitively, Bw captures the values for which |q(θ1, w)| is large. Because Bw is determined
by the function q(θ1, w) = ∑

c∈C f(c1θ1 +w), it has a convenient property: for any w, z ∈ R,
Bw+z is just the set Bw translated by z (mod 2π). Figure 3.8 provides a visual aid for the
structure of this set and the remainder of the proof.

It will be convenient to write |Qc2,c′
2
| in terms of the probability that a random point in

[−π, π]2 is contained in Qc2,c′
2
. We have

|Qc2,c′
2
| = 4π2 · Pr

θ1,θ2∼[−π,π]

[
θ1 ∈

(
Bc2θ2 ∩Bc′

2θ2

)]
= 4π2 · Pr

θ1,θ2∼[−π,π]

[
θ1 ∈

(
B0 ∩B(c′

2−c2)θ2

)]
= 4π2 · Pr

θ1∼[−π,π]
[θ1 ∈ B0] · Pr

θ1,θ2∼[−π,π]

[
θ1 ∈ B(c′

2−c2)θ2

∣∣∣∣ θ1 ∈ B0

]
. (3.95)

Here the second line follows from translating both sets by c2θ2 (mod 2π), which does not
change the size of the intersection. The last line uses the identity Pr[A∩B] = Pr[A] ·Pr[B |
A].

Given any nonzero integer k and any fixed offset w ∈ [−π, π], we observe that

Pr
θ2∼[−π,π]

[w ∈ Bkθ2] = Pr
y∼[−π,π]

[y ∈ B0] = |B0|
2π , (3.96)

because sampling θ2 uniformly from [−π, π] distributes kθ2 (mod 2π) uniformly over [−π, π].
(3.96) holds for any nonzero integer k ̸= 0 and any offset w ∈ [−π, π], so |B0|/(2π) can be
substituted for both (conditional) probabilities in (3.95).

Recall the definition of the set family Ac1,w in (3.88). Using (3.90) to union-bound (3.95)
yields (3.94):

|Qc2,c′
2
| = 4π2 ·

(
|B0|
2π

)2

73

Tim Randolph Columbia University

B0

θ2

θ10−π−2π−3π π 2π 3π

Figure 3.8: Visual aid for the proof of Claim 10. For any offset θ2 ∈ [−π, π], the range
B(c′

2−c2)θ2 is the intersection of the line segment (−π, θ2)–(π, θ2) with the gray regions. The
red regions indicate {(θ1, θ2) ∈ [−π, π]2 : θ1 ∈ B0 ∩B(c′

2−c2)θ2}.

≤
(∑

c∈C

|Ac,0|
)2

≤ |C|2 ·
(

2b0

x̂

)2

.

Corollary 4. (Part 3) = o(ρ2
n).

Proof. For ease of reference, we restate the results in Claims 8 to 10:
• Claim 8: |G(θ1, θ2))| ≤ |C|(2−ε2) for any point (θ1, θ2) ∈ [−π, π]2 \R′′

θ .

• Claim 9: The subregion Q′ on which |G(θ1, θ2)| > |C|2/a has measure at most |C|2· 4πb0
x̂

.

• Claim 10: The subregion Q′′ on which |G(θ1, θ2)| > |C| + ε has measure at most
|C|4 · (2b0

x̂
)2.

The union of the three disjoint subregions (Q′′ \ R′′
θ) and (Q′ \ Q′′) and [−π, π]2 \ Q′ is

the domain of integration for (Part 3), namely [−π, π]2 \R′′
θ . As a consequence, we have

(Part 3) ≤ 1
4π2

 ∫∫
(θ1,θ2)∈[−π, π]2\Q′

+
∫∫

(θ1,θ2)∈Q′\Q′′

+
∫∫

(θ1,θ2)∈Q′′\R′′
θ

 |G(θ1, θ2)|n · dθ1dθ2

74

Tim Randolph Columbia University

≤ 1
4π2

((
|C|2

a

)n

· 4π2 + (|C|+ ε)n · |Q′|+ |C|(2−ε2)n · |Q′′|
)

≤ 1
4π2

(|C|2
a

)n

· 4π2 + (|C|+ ε)n · |C|2 · 4πb0

x̂
+ |C|(2−ε2)n · |C|4 ·

(
2b0

x̂

)2


= O(εn) +O

(
(|C|+ ε)n

x̂

)
+O

(
|C|(2−ε2)n

x̂2

)
. (3.97)

Here the second line follows from Claim 8 and the definitions of Q′ and Q′′. The third line
applies Claims 9 and 10. The fourth line holds since (for the first term) a > |C|2/ε by
definition (3.40) and (for the second and third terms) both |C| and b0 are constants. Since
x̂ = O∗(|C|(1−ε)n) for a constant ε > 0, we know from (3.28) that

ρ2
n = Θ

(
|C|2n

x̂2n

)
= Ω(|C|εn).

Finally, we show that each of the three terms of (3.97) is o(ρ2
n).

1. For the first term, we have O(εn) = on(1) = o(ρ2
n).

2. For the second term, we have

O((|C|+ ε)n · x̂−1) = O(ρ2
n) · (|C|+ ε)n · x̂n

|C|2n

= O(ρ2
n) ·O

(
(|C|+ ε)n · 1

|C|(1+ε/2)n

)

= O(ρ2
n) ·O

(
|C|(1+ε/4)n · 1

|C|(1+ε/2)n

)
= O(ρ2

n) ·O(|C|−(ε/4)n)
= o(ρ2

n).

Here the first line follows from the definition of ρn (3.28). The second line holds because
x̂ = O∗(|C|(1−ε)n) and thus x̂n = O(|C|(1−ε/2)n). The third line holds since

|C|+ ε ≤ |C| · (1 + ε/4) < |C|1+ε/4,

given that |C| ≥ |[±2]| = 4.

3. For the third term, we have

O(|C|(2−ε2)n · x̂−2) = O(ρ2
n) · n · |C|−ε2n

= o(ρ2
n).

75

Tim Randolph Columbia University

This completes the proof of Corollary 4.

Proof of Lemma 14. Putting Claims 6 and 7 and Corollary 4 together, we have

E⃗
x

[Z2] ≤ (Part 1) + (Part 2) + (Part 3) ≤ ρ2
n · (1 + on(1)).

3.3 Algorithmic Results
This section presents our main algorithm for average-case GSS, which we use to prove The-
orem 1.

At a high level, our structural results tell us the parameter settings for which average-case
GSS instances are likely to have solutions. This allows us to prove the correctness of our
algorithm, which combines new preprocessing ideas with an approach based on the Represen-
tation Method. As such, we recommend that the reader is familiar with the Representation
Method (Section 1.1.2) before reading this section.

At a high level, since instances in which x̂ > |C|(1+ε)n are extremely unlikely to have
a solution, we can simply ignore such instances. On the other extreme, we show how to
“shrink” instances for which x̂ < |C|(1−ε)n for any constant ε while preserving the existence
of a solution. The shrinking operation also gives an improved runtime for our algorithm on
dense instances. This allows us to focus on the narrow range of values x̂ ∈ |C|(1±ε) for an
arbitrarily small constant ε > 0.

At this point, we adapt the Representation Method to Generalized Subset Sum as fol-
lows. Partial assignments of coefficients to input elements play the role of partial candidate
solutions. We define the signature of a partial assignment to be the coefficient-weighted
sum of the inputs with assigned coefficients. Then, we hash partial candidate solutions by
signature into residue classes modulo a large random prime, following the general pattern
described in Section 1.1.2.

We prove a result (Lemma 15, the “Signature Distribution Lemma”) that guarantees
that with high probability over the input, the partial assignments of a solution have many
distinct signatures with very high probability, satisfying the conditions of the Representation
Method. Finally, we use dynamic programming to simulate a hash of partial assignments into
residue classes modulo a large random prime, subsample elements from pairs of corresponding
residue classes, and use a Meet-in-the-Middle approach to recover a solution.

3.3.1 Reduction to a Narrower Problem

We start by showing that it suffices to design an algorithm for the core case when x̂ ∈ |C|(1±ε)n

for a small positive constant ε and some information about the solution is known.

76

Tim Randolph Columbia University

Definition 1 (Assignment Profile). Given a coefficient set C, we refer to π = (πc)c∈C , a
partition of n indexed by C, as an assignment profile.

We define the size |π| of an assignment profile to be n − π0, the number of elements to
which π assigns a nonzero coefficient.

In other words, π is a |C|-tuple of positive integers that sums to n. The idea is that an
assignment profile refers to a certain class of solutions: those which assign the coefficient
c0 to πc0 inputs, assign the coefficient c1 to πc1 inputs, etc. Formally, for an input vector
x⃗ = (x1, . . . , xn), a target τ and a profile π, we say c⃗ ∈ Cn is a solution to GSS matching the
assignment profile π if c⃗ · x⃗ = τ and the number of occurrences of c in the solution vector c⃗
is πc for each coefficient c ∈ C.

In order to prove Theorem 1, we reduce GSS to a more specific problem: that of finding a
GSS solution matching a specific profile π. Afterwards, it will remain to prove the following
theorem:

Theorem 5. Fix d ∈ N≥1, C = [±d] or [−d : d]. For any sufficiently small constant ε > 0,
there exists δ = δ(ε) > 0 and a randomized algorithm with running time |C|Λ(|C|)n+εn, where
Λ is as defined as in (3.1), with the following performance guarantee:

Given any x̂ ∈ |C|(1±δ)n, τ with |τ | = o(nx̂), and assignment profile π, the algorithm
returns a GSS solution matching π, if one exists, with probability 1− e−Ω(n) over the choice
of a random input vector x⃗ ∼ [0 : x̂− 1]n and randomness internal to the algorithm.

Before proving Theorem 5, we show how it can be applied, along with our structural
results, to prove Theorem 1; the proof of Theorem 2 is similar and can be found in Sec-
tion 3.3.6.

Proof of Theorem 1. Fix a constant ε > 0 sufficiently small and define δ := δ(ε) as required
by the statement of Theorem 5. We will show an algorithm for average-case GSS with
running time |C|Λ(|C|)n+εn. Given a GSS instance defined by a coefficient set C, a range
bound x̂, a target τ satisfying |τ | = o(nx̂), an assignment profile π, and an input vector
x⃗ ∈ [0 : x̂− 1]n, we split the problem into cases based on C and x̂:

1. C = [−d : d]:

(a) x̂ ≥ |C|(1+δ)n. It follows from Theorem 3 that the probability of having a solution
is e−Ω(n);9 thus we return ‘No’ and succeed with probability 1− e−Ω(n).

(b) x̂ ∈ |C|(1±δ)n. Run the algorithm guaranteed by Theorem 5 for every possible
profile π and return any solution it finds; return ‘No’ if no solution is found for any

9There is a singular edge case: 0⃗ is a solution if and only if τ = 0. For most applications, such as Equal
Subset Sum, the 0⃗ solution is trivial and disallowed, but the algorithm is easily modified to handle either
case.

77

Tim Randolph Columbia University

profile π. Because there are poly(n) assignment profiles in total, the chance that
any iteration of the algorithm fails remains e−Ω(n) by a union bound. (Runtime
also increases by a poly(n) factor.)

(c) x̂ ≤ |C|(1−δ)n. If x̂ = 2o(n), the problem can be solved in subexponential time
via dynamic programming. Otherwise, set n′ = Ω(n) such that

|C|(1−δ)n′
< x̂ < |C|(1−δ/2)n′

.

Note that τ still satisfies |τ | = o(n′x̂) given n′ = Ω(n).
Run the algorithm guaranteed by Theorem 5 on the first n′ input integers, trying
all poly(n) possible assignment profiles. By Theorem 3, there exists a solution with
probability at least 1− e−Ω(n′) = 1− e−Ω(n) and thus the algorithm guaranteed by
Theorem 5 recovers a solution with probability 1−e−Ω(n). Given that C = [−d : d],
we can recover a solution to the original problem by assigning the 0 coefficient to
the remaining inputs.

2. C = [±d]:

(a) x̂ ≥ |C|(1+δ)n. As in Case 1(a), answer ‘No’, which is correct with probability
1− e−Ω(n) by Corollary 3 and Theorem 4.

(b) x̂ ∈ |C|(1±δ)n. As in Case 1(b), run the algorithm guaranteed by Theorem 5 for
every possible assignment profile π.

(c) x̂ ≤ |C|(1−δ)n. Unlike Case 1(c), we can no longer recover a solution to the
original problem by solving a subinstance and assigning the remaining inputs the
coefficient 0.
Instead, we can shrink the input instance as follows. Set n′ as in Case 1(c). For
each input xi, i ∈ [n′ + 1 : n], perform the following operation: if the current
target τ is positive, assign −1 to xi and subtract it from τ to create a new target.
If the current target τ is negative, assign +1 to xi and add it to τ to create a new
target.
After this procedure, we are left with n′ random numbers x⃗′ = (x1, . . . ,xn′) and a
new target τ ′ with |τ ′| = o(n′x̂) such that any solution to (x⃗, τ ′) can be extended
to a solution to (x⃗, τ). By Theorem 4, there is a solution with probability at least
1− o(1) over the randomness of x⃗′ in the C = [±d], d > 1 case. By Corollary 3,
there is a solution with probability at least 1− o(1) over the randomness of x⃗′ in
the C = [±1] case (if ∑i xi has the same parity as τ), as the shrinking procedure
preserves the parity of ∑i xi − τ . This implies that running the algorithm of
Theorem 5 on x⃗′ and τ ′ for all profiles π finds a solution with probability at least
1− o(1), which can be extended to a solution to x⃗ and τ .

78

Tim Randolph Columbia University

3.3.2 Overview of the GSS Algorithm
It remains to prove Theorem 5 by demonstrating an algorithm that solves GSS in time
|C|Λ(|C|)n+εn, given an assignment profile π and the guarantee that x̂ ∈ |C|(1±δ)n for some
sufficiently small δ := δ(ε).10

Terms and Definitions

In a nutshell, our algorithm extends the Representation Method to more general coefficient
sets. Recall from Section 1.1.2 that the Representation Method works by first constructing
exponentially many partial candidate solutions, each of which constitutes a guess at a partial
solution. In the case of GSS on C = {0, 1}, in which we can assume without loss of generality
that solutions contain at most n/2 elements, partial candidate solutions are subsets of the
input of size at most n/4.

We proceed to generalize the notions of candidate solutions and partial candidate solu-
tions.

Definition 2 (Half Coefficient Vectors (HCVs)). Given a coefficient set C, a candidate
solution is specified by a coefficient vector c⃗ ∈ Cn. Any coefficient vector c⃗ admits numerous
half coefficient vectors (HCVs), each of which is an n-dimensional vector h⃗ ∈ Cn such that
for each nonzero coefficient c ∈ C \ {0}, the set of indices assigned coefficient c satisfies

{i ∈ [n] : h⃗i = c} ⊆ {i ∈ [n] : c⃗i = c}, and (3.98)

|{i ∈ [n] : h⃗i = c}| ∈ |{i ∈ [n] : c⃗i = c}|
2 ± 1/2. (3.99)

We denote the set of all HCVs of a coefficient vector c⃗ by HCV (c⃗). The size of an HCV is
its number of non-zero elements, which is at most n/2 +O(|C|).

In other words, every non-zero element of h⃗ matches c⃗, and the number of elements of
h⃗ that take the coefficient c is half the number of elements of c⃗ that take the coefficient c
(with a margin of ±1/2 added to account for parity).

We refer to two HCVs h⃗, h⃗′ of the coefficient vector c⃗ as a matching pair if h⃗ + h⃗′ = c⃗.
(Note that this implies h⃗ and h⃗′ do not assign the same nonzero coefficient to any element.)

10In the proofs that follow, we restrain ourselves to the observation that sufficiently small ε > 0 and
δ(ε) > 0 are sufficient for the truth of the statements we wish to prove, where relevant. The constraints on
δ and ε follow from the following requirements:

1. 1
|C| > ε

|C−1| + 2ε log2(|C|), from (3.111)

2. δ < f(ε)/ log2(|C|), from (3.115), for f as in (3.114).

79

Tim Randolph Columbia University

If c⃗ is a solution, (in which case h⃗ · x⃗ + h⃗′ · x⃗ = (⃗h + h⃗′) · x⃗ = τ) we refer to h⃗ and h⃗′ as a
solution pair.

Crucial to the success of the Representation Method when C = {0, 1} is the fact that
solution pairs have complementary subset sums: if A and B are disjoint subsets of the input
and Σ(A) + Σ(B) = τ , then Σ(A) = τ − Σ(B). This simplifies our task, as to search for a
solution pair involving B we need only look at subsets of the input that add to τ − Σ(B).
The analogue of the sum of elements in a partial candidate solution is the signature of a
HCV:

Definition 3 (Signature). The signature of a (half) coefficient vector v⃗ with respect to an
input vector x⃗ is the dot product v⃗ · x⃗.

Each assignment profile π corresponds to an exponential number of coefficient vectors.
We write Cn[π] to denote this set; that is, the set of all coefficient vectors that have πc

elements equal to the coefficient c, for each c ∈ C. Extending our previous notation, we
write HCV (Cn[π]) to denote the set of all HCVs that match a coefficient vector in Cn[π].

Our algorithm will search within HCV (Cn[π]), the set of all HCVs matching any coeffi-
cient vector with the assignment profile π, and attempt to recover a solution pair in HCV (c⃗)
for some solution vector c⃗. Because the size of HCV (Cn[π]) and the number of solution
vectors will be important to our algorithm, we introduce some notation in advance.

We introduce the shorthand
a(π) = |HCV (c⃗)|

to denote the size of the set of HCVs matching an arbitrary vector c⃗ that fits the assignment
profile π. (Note that this quantity is the same for any c⃗ that fits the assignment profile π,
so identifying a specific c⃗ is unnecessary.) When π is understood from context, we simply
write a.

We have

a(π) =
∏

c∈C\{0}
Θ∗

(
2|πc|

)
= Θ∗(2|π|), (3.100)

as a consequence of Stirling’s approximation (2.3).
We also introduce the shorthand

b(π) = |HCV (Cn[π])|

to denote the size of our search space, and observe that the size of HCV (π) can be calculated
by using Stirling’s approximation for multinomials.

Let
πh0 = π0 +

∑
c∈C\{0}

⌊
πc

2

⌋

80

Tim Randolph Columbia University

denote the minimum number of 0 coefficients in an HCV of a coefficient vector that fits the
assignment profile π. Writing

α := |π|
n
,

we have

b(π) = O∗
((

n

{⌈πc

2 ⌉}c∈C\{0}, πh0

))

= O∗(2Hπn) where Hπ = H

({
πc

2n

}
c∈C\{0}

,
πh0

n

)

≤ H

(
α

2(|C| − 1) , . . . ,
α

2(|C| − 1) , 1−
α

2

)

= α

2 · log2

(
2(|C| − 1)

α

)
+
(

1− α

2

)
· log2

(2
2− α

)
. (3.101)

Here, the first line uses the fact that the distribution of coefficients⌈
πc

2

⌉
,
⌈
πc

2

⌉
, . . . ,

⌈
πc

2

⌉
︸ ︷︷ ︸

|C|−1

, πh0

maximizes entropy and thus the number of HCVs (O∗ notation hides a union bound over
HCVs with coefficient distribution that differs by up to O(|C|)), the second uses Stirling’s ap-
proximation for multinomials (2.6), and the third line uses as an upper bound the assignment
profile that maximizes the entropy function.

The Algorithm

Algorithm 3.9 outlines our algorithm for solving GSS instances with a fixed assignment
profile. This subsection provides a high-level description of the algorithm, but in order
to simplify the presentation, certain implementation details are deferred to the proofs of
correctness and runtime (Propositions 1 and 2, below).

The input to the algorithm consists of an error parameter ε, a target τ , a coefficient set
C = [−d : d] or C = [±d] for some constant d, an assignment profile π, and an input vector
x⃗ satisfying x⃗ ∈ [0 : x̂ − 1]n for some x̂ ∈ |C|(1±δ), where δ := δ(ε) is a sufficiently small
constant depending on ε.

If a solution exists, the algorithm wants to recover one of a(π) solution pairs hidden
within a set of b(π) HCVs. Following the Representation Method, we reduce the size of the
search space while preserving at least one solution pair with high probability. To accomplish
this, we select a large random prime p and divide the set HCV (Cn[π]) into residue classes
based on the signature of each HCV modulo p.

81

Tim Randolph Columbia University

Each residue class contains b(π)/p HCVs in expectation. Thus, if we set p ≈ a(π)/n,
any solution c⃗ that fits the assignment profile π corresponds to Ω(n) elements of HCV (c⃗) in
each residue class in expectation. Moreover, if one element h⃗ of a solution pair falls into the
residue class r (mod p), this guarantees that the other element h⃗′ of the same solution pair
will fall into the residue class τ − r (mod p), due to the fact that h⃗ · x⃗+ h⃗′ · x⃗ = τ .

The algorithm selects r ∼ [p] uniformly at random and generates the list of HCVs whose
signatures fall into the residue classes r (mod p) and τ − r (mod p). Finally, we run a
Meet-in-the-Middle subroutine on the two lists to recover a solution pair.

For |C| ≤ 3, it holds that
b(π)2/3a(π)−1/3 < a(π), (3.102)

and turns out to be more efficient to subsample solution pairs from larger residue classes
than to enumerate the entirety of smaller residue classes. In these cases, we choose p ≈
b(π)2/3a(π)−1/3 so that each pair of residue classes contains an exponential number of match-
ing pairs in expectation. After choosing a pair of residue classes, we subsample each residue
class to create solution lists that are likely to contain at least one matching pair. We then
use a Meet-in-the-Middle algorithm on the subsampled lists to recover a solution as before.

3.3.3 Implementation Details and Signature Distribution Lemma

Although the idea behind Algorithm 3.9 is relatively straightforward, a correct implemen-
tation requires the careful navigation of several overlapping technical requirements. First,
in order for our algorithm to recover a solution c⃗, we need the solution pairs in HCV (c⃗) to
have many distinct signatures. This is necessary to ensure that most pairs of residue classes
contain solution pairs. Otherwise, our approach of sampling a small number of residue class
pairs may not recover a solution, even if one exists.

Distribution of Solution HCV Signatures

Lemma 15 will establish that with very high probability over x⃗ ∼ [0 : x̂ − 1]n, either there
exists a solution c⃗ such that HCV (c⃗) contains many distinct signatures, or x⃗ contains no
solutions at all. However, as a technical requirement for the lemma, we must first translate
our input instance as follows.

Define
z := arg max

c∈C\{0}
πc (3.103)

to be the nonzero coefficient that maximizes πz. If we consider the coefficient set

C ′ := C − z, (3.104)

82

Tim Randolph Columbia University

Procedure GSS(ε, τ, C, π, x⃗)

Input: An error parameter ε > 0, an integer target τ , a coefficient set C, an
assignment profile π of C, and an input vector x⃗ ∈ [0 : x̂− 1]n for x̂ ∈ |C|(1±δ(ε))n.

0. Define a and b with respect to π as in (3.100) and (3.101).
Define pmax := min(a/n, b2/3a−1/3).

1. Repeat poly(n) times (with poly(n) specified in Proposition 1):

(a) Sample p ∼ [pmax, 2pmax] and r ∼ [p].
(b) i. If pmax = a/n: Enumerate L1 = {h⃗ ∈ HCV (Cn[π]) | h⃗ · x⃗ = r

(mod p)} using the procedure detailed in Proposition 2.
ii. Else if pmax = b2/3a−1/3: Set L1 to be a subsample of O∗(b/√ap)

elements drawn from the above set with replacement.
(c) Define L2 as L1, but with respect to the residue class τ − r.
(d) Sort L1 and L2 by signature.
(e) Use the deterministic Meet-in-the-Middle procedure detailed in

Proposition 2 to find a solution pair h⃗, h⃗′, if one exists, and return h⃗+ h⃗′.

2. If the loop terminates without returning a solution, return ‘No’.

Figure 3.9: An algorithm to recover GSS solutions that fit a given assignment profile π, as
required for Theorem 1. For ease of readability, precise implementation details are deferred
to the proofs of correctness and runtime (Propositions 1 and 2) below.

our GSS problem becomes that of finding c⃗ ∈ C ′n such that

c⃗ · x⃗ = τ ′ := τ − zΣ(x⃗), (3.105)

subject to the requirement that c⃗ fits the assignment profile π′ defined for each c ∈ C as

π′
c−z := πc. (3.106)

We will run Algorithm 3.9 on the translated instance defined by τ ′, C ′, and π′. Any
solution c⃗ to the translated instance can be easily mapped back to the original problem by
adding z to each component; indeed, solutions are preserved via a one-to-one mapping. In
that case, why bother with the translation? The reason is that the translation assures a
crucial property required for Lemma 15: specifically, the new target τ ′ now depends on the

83

Tim Randolph Columbia University

input randomness. This in turn will ensure that the signatures of solution pairs distribute
as intended while also maintaining a an upper bound on the solution size |π′|.

Lemma 15 (Signature Distribution Lemma). Fix a coefficient set C, a target τ , x̂ ∈ |C|(1±δ)n

for some sufficiently small constants ε > 0 and δ = δ(ε) > 0, and an assignment profile π.
Define C ′, τ ′, and π′ as in (3.104), (3.105), and (3.106).

With probability 1 − e−Ω(n) over x⃗ ∼ [0 : x̂ − 1]n, either there exists a solution c⃗ ∈ C ′n,
matching π′ and satisfying c⃗·x⃗ = τ ′, such that HCV (c⃗) contains elements with Ω(|HCV (c⃗)|)
distinct signatures, or no solution exists.

Proof. We prove the lemma via a counting argument. Consider a quadruple

(x⃗, c⃗, h⃗, h⃗′),

where x⃗ ∈ [0 : x̂ − 1]n is an input vector, c⃗ ∈ C ′n is a coefficient vector matching the
assignment profile π′, and h⃗ and h⃗′ are distinct HCVs of c⃗ (not necessarily a matching pair).
We refer to such a quadruple as a signature-collision if

h⃗ · x⃗ = h⃗′ · x⃗,

that is, if h and h′ have the same signature with respect to x.
We proceed to bound the total number of signature-collisions. Fix c⃗ ∈ C ′n and two dis-

tinct vectors h⃗ and h⃗′ that are both HCVs of c⃗. Because h⃗ and h⃗′ are distinct by assumption,
there exists some index k ∈ [n] on which h⃗ and h⃗′ differ. Without loss of generality, suppose
that h⃗k = 0 ̸= h⃗′

k (as this component can take only the value c⃗k or 0).
For any fixed input vector x⃗[n]\{k}, there exists at most one value for xk for which the

quadruple (x⃗, c⃗, h⃗, h⃗′) is a signature collision. Thus, the number of input vectors x⃗ ∈ [0 :
x̂ − 1]n with respect to which h⃗ and h⃗′ have the same signature is at most x̂n−1. Union-
bounding over the O(a(π′)2) distinct pairs of HCVs drawn from HCV (c⃗) and |Cn| possible
coefficient vectors, we conclude that there are at most

O(|C|na(π′)2x̂n−1)

signature-collisions in total.
Call a fixed pair (x⃗, c⃗) a “bad” pair if HCV (c⃗) has o(|HCV (c⃗)|) = o(a(π′)) distinct

signatures with respect to x⃗. This is only possible if there are at least Ω(|HCV (c⃗)|) =
Ω(a(π′)) signature-collisions corresponding to the pair (x⃗, c⃗); otherwise, most HCVs of c⃗ do
not collide with any others. Thus any bad pair (x⃗, c⃗) “uses up” Ω(a(π′)) signature collisions,
and there can be at most O(|C ′|na(π′)x̂n−1) bad pairs.

Finally, we consider the pair (x⃗, c⃗), in which c⃗ is fixed and x⃗ ∼ [0 : x̂− 1]n. The crucial
observation is that the event that (x⃗, c⃗) is a bad pair is independent of the draw of each xi

for which ci = 0.

84

Tim Randolph Columbia University

Thus if (x⃗, c⃗) is a bad pair, this implies that c⃗ participates in x̂|π′
0| bad pairs, one for

every possible assignment of the irrelevant indices of x⃗. On the other hand, thanks to our
translation, whether c⃗ is a solution does depend on the indices of x⃗ for which ci = 0. Because

τ ′ = τ − zΣ(xi)

for a nonzero coefficient z, τ ′ depends on every component of x⃗. In particular, this implies
that the event (x⃗, c⃗) is bad is independent from the event that c⃗ is a solution of x⃗. Because
the event that c⃗ is a solution of x⃗ occurs with probability at most 1/x̂, it follows that there
are at most

O(|C ′|na(π′)x̂n−2)
bad pairs (x⃗, c⃗) such that c⃗ is a solution for x⃗.

We can use this quantity as an upper bound on the number of input vectors x⃗ that have
any solution c⃗ ∈ C ′n such that HCV (c⃗) contains elements with on(a(π′)) distinct signatures.
Evaluating this expression yields

O(|C ′|na(π′)x̂n−2) = O∗(|C|n2|π′|x̂n−2) (3.107)

using the fact that |C ′| = |C| and substituting for a(π′) using (3.100). By Lemma 16 (proved
below), we have that, conditioning on

|π′| >
(

1− 1
|C|

+ ε

|C| − 1

)
n, (3.108)

the probability over a random instance x⃗ ∼ [0 : x̂ − 1]n that a solution exists is at most
e−Ω(n). Taking a union bound over the solution space, there exist at most e−Ω(n) · x̂n input
vectors x⃗ such that (3.108) holds and x⃗ admits a solution. On the other hand, if (3.108)
does not hold, substituting this fact into (3.107) yields

O∗(|C|n2|π′|x̂n−2) ≤ O∗(x̂n−2 · |C|n · 2(1− 1
|C| + ε

|C|−1)n) (3.109)

≤ O∗(x̂n) · |C|2εn · 2−(1
|C| − ε

|C|−1)n (3.110)

≤ O∗(x̂n) · 2−(1
|C| − ε

|C|−1 −2ε log2(|C|))n, (3.111)

where the second line uses the fact that 2n ≤ |C|n ≤ x̂·|C|εn and the third line regroups. The
resulting quantity represents an e−Ω(n)-fraction of the input space when ε > 0 is sufficiently
small.

Union-bounding over (1) the number of input vectors x⃗ for which (3.108) holds and x⃗
still admits a solution, which is an e−Ω(n)-fraction of the input space by Lemma 16, and (2)
the number of input vectors x⃗ such that (3.108) does not hold and x⃗ has a solution c⃗ with
few distinct signatures, which is an e−Ω(n)-fraction of the input space by (3.111), finishes the
proof of the lemma.

85

Tim Randolph Columbia University

Lemma 16 (Solution Size Bound). Fix a coefficient set C, a target τ , x̂ ∈ |C|(1±δ)n for some
sufficiently small constants ε > 0 and δ = δ(ε) > 0, and an assignment profile π. Define C ′,
τ ′, and π′ as in (3.104), (3.105), and (3.106).

If π′ satisfies

|π′| >
(

1− 1
|C|

+ ε

|C| − 1

)
n, (3.112)

then x⃗ ∼ [0 : x̂− 1]n admits a solution c⃗ that matches π′ with probability at most e−Ω(n).

Proof. We consider two cases, depending on whether the number of 0 coefficients assigned
by the original (untranslated) solution profile π satisfies

π0 ≥
(

1
|C|

+ ε

)
n. (3.113)

Case 1: (3.113) holds. The number of coefficient vectors that match π′ is(
n

{πc}c∈C

)
= Θ∗

(
2H

(
{πc

n }c∈C

))

by (2.6), Stirling’s Approximation for multinomial coefficients. If we upper bound by the
number of solutions matching the assignment profile π which maximizes the entropy function,
we have that the number of coefficient vectors that match π is

O∗(2ηn), where η = H

 1
|C|

+ ε,
1
|C|
− ε

|C| − 1 , . . . ,
1
|C|
− ε

|C| − 1︸ ︷︷ ︸
|C|−1


Significantly,

η = log2(|C|)− f(ε) (3.114)
for some function f that is nonnegative and increasing on [0, 1].

Each of the O∗(2ηn) coefficient vectors is a solution with probability at most 1/x̂ over
x⃗ ∼ [0 : x̂ − 1]n. (To see this, consider that for any fixed c⃗ and value of x⃗[n−1], there is at
most one choice of xn such that c⃗ · x⃗ = τ .) Union-bounding over every coefficient vector
matching π, we have that for any

δ <
f(ε)

log2(|C|)
, (3.115)

the probability of having a solution matching π is

O∗
(
|C|n · 2−f(ε)n

x̂

)
≤ O∗

(
2−f(ε)n · |C|δ)n

)
= e−Ω(n).

86

Tim Randolph Columbia University

Case 2: (3.113) does not hold. Thus we have

π0 ≤
(

1
|C|

+ ε

)
n

When we translate the solution profile, π0 becomes π′
c−z. Due to the choice of z as the

nonzero coefficient that mazimizes πz, we have that

π′
0 ≥

1−
(

1
|C| + ε

)
|C| − 1 n

= 1
|C|
− ε

|C| − 1

and thus
|π′| ≤

(
1− 1
|C|

+ ε

|C| − 1

)
n,

violating our initial assumption (3.112).

3.3.4 Proof of Correctness

Proposition 1 (Correctness of Algorithm 3.9). Fix C = [±d] or [−d : d], ε > 0, x̂ ∈ |C|(1±δ)n

for ε and δ = δ(ε) sufficiently small, and τ = o(nx̂). Define C ′, π′ and τ ′ with respect to
x⃗ ∼ [0 : x̂− 1]n as in (3.104), (3.105), and (3.106).

The algorithm outlined in Algorithm 3.9, when implemented as described below, succeeds
on the input (ε,τ ′, C ′, π′, x⃗) with probability 1− e−Ω(n).

The algorithm succeeds automatically if the input instance does not admit a solution, as
it never returns a false positive. Thus by Lemma 15 (the Signature Distribution Lemma), we
can assume without loss of generality that with probability 1−e−Ω(n) there exists a coefficient
vector c⃗ ∈ C ′n matching π′ and satisfying c⃗ · x⃗, such that HCV (c⃗) contains elements with
Ω(|HCV (c⃗)|) = Ω(a(π′)) = Ω(a) distinct signatures. Conditioning on this event, fix some
such solution c⃗ and let S := S(x⃗, c⃗) denote the set of distinct signatures of the HCVs of c.

We divide the proof into two parts:

1. We first prove that with very high probability, Algorithm 3.9 generates a “good pair”
(p,r), which will result in a relatively short L1 and L2 containing solution pairs, at
least once during the loop in Step 1 of Lemma 17.

2. We then complete the proof of Proposition 1 by showing that, given an iteration of the
loop in Step 1 which generates a “good pair”, Algorithm 3.9 recovers a solution with
high probability.

87

Tim Randolph Columbia University

Lemma 17. With respect to Step 1 of Algorithm 3.9, an input vector x⃗, and a solution c⃗
with Ω(|HCV (c⃗)|) = Ω(a) distinct signatures, define a good pair (p, r) ∈ [pmax : 2pmax]× [p]
to be one that satisfies

1. There exist Ω
(

a
p

)
elements of HCV (c⃗) with signatures equal to r (mod p).

2. There exist O
(

bn3

p

)
elements of HCV (Cn[π]) with signatures equal to r (mod p).

At least one iteration of the loop in Step 1 of Algorithm 3.9 chooses a good pair for some
solution c⃗ with probability 1−e−Ω(n) over the choice of x⃗, p, and r, conditioned on the event
that a solution exists.

Proof. Condition on the event that there exists at least one solution c⃗ with Ω(|HCV (c⃗|) =
Ω(a) distinct signatures, which occurs with probability 1 − e−Ω(n) by Lemma 15 as long as
some solution exists, and define the random set S as above. We first observe that

|S| log2(diam(S)) ≤ a · log2(dx̂) (3.116)
≤ O(an) (3.117)
≤ O(n2pmax) (3.118)

where the first line follows from our assumption, the second from the fact that x̂ = |C|O(n),
and the third from the definition of pmax in Algorithm 3.9. By Lemma 9, for p ∼ [pmax :
2pmax] the set

R =
{
r ∈ [p]

∣∣∣∣∣ |{s ∈ S | s = r (mod p)}| ≥ |S|2p = Ω
(
a

p

)}

of residue classes corresponding to at least a 1/2p-fraction of the set of distinct signatures
has cardinality

|R| ≥ |S|
n3 (3.119)

with constant probability over the choice of p,r.
We would also like to bound the number of residue classes that contain too many elements

of HCV (Cn[π′]). For this purpose, condition on the choice of p,r satisfying (3.119) and
observe that the set of elements in HCV (Cn[π′]) whose signatures fall into any randomly
selected residue class r ∈ |R| has cardinality at most

∣∣∣{h⃗ ∈ HCV (Cn[π′])
∣∣∣ h⃗ · c⃗ = r (mod p)

}∣∣∣ ≤ b

|R|

<
bn3

|S|

88

Tim Randolph Columbia University

= O

(
bn3

a

)

in expectation over the choice of r, and thus is O(bn3

a
) for a constant fraction of the elements

in R by by Markov’s inequality. In other words, with constant probability over the choice
of p and r, Ω(|R|) residues correspond to a good pair and R satisfies (3.119). We conclude
that the conditions in the lemma statement hold with probability

Ω
(
|R|
p

)
= Ω

(
|S|
n3p

)

= Ω
(
a

n3p

)

= Ω
 a

n3 min[a
n
, b2/3

a1/3]


= Ω

(1
n3

)
for a randomly sampled pair (p,r), where the second line uses

2pmax = 2 min
[
a

n
,
b2/3

a1/3

]

as a lower bound on p and the third line uses (3.102). We can inflate the probability
of choosing a good pair to 1 − e−Ω(n) by choosing independent pairs (p,r) a polynomial
number of times as in Algorithm 3.9.

Proof of Proposition 1. By Lemma 17, if a solution exists, in some iteration of the loop in
Step 1 of Algorithm 3.9, we choose a good pair (p, r) satisfying that for some solution c⃗,

1. There exist Ω
(

a
p

)
elements of HCV (c⃗) with signatures equal to r (mod p).

2. There exist O
(

bn3

p

)
elements of HCV (Cn[π]) with signatures equal to r (mod p).

with probability 1 − e−Ω(n). We condition on this event and consider the probability that
the algorithm recovers a solution on this iteration of the loop. We consider two cases based
on the choice of pmax.

Case 1: a/n < b2/3a−1/3. In this case the algorithm sets pmax = a/n. The residue class
pair (r,τ ′ − r) corresponds to

Ω
(
a

p

)
= Ω(n)

89

Tim Randolph Columbia University

solution pairs, so a deterministic search for solutions over the two lists guarantees solution
recovery.

Case 2: a/n > b2/3a−1/3. In this case the algorithm sets pmax = b2/3a−1/3. Let

s := Ω
(
a

p

)
= Ω

(
a
a1/3

b2/3

)
= Ω(n) (3.120)

denote the number of solution pairs corresponding to the residue class pair (r,τ ′ − r). In
this case, the algorithm creates L1 and L2 by subsampling

bn4
√
ap

= O∗
(

b
√
ap

)

elements from each residue class uniformly at random with replacement. Thus, in expecta-
tion,

bn9/5
√
ap
· Ω

 s
bn3

p

 = Ω
(
sn

√
p

a

)
= Ω(n

√
s)

elements in each list are halves of some solution pair, where the second line follows from
(3.120). Because we sample each element independently with replacement, applying a Cher-
noff bound implies that both lists contain

m := Ω
(
n
√
s
)

solution pair halves with probability 1− e−Ω(n).
It remains to estimate the probability that our two lists contain both halves of the same

matching pair. Conditioning on the event that both lists contain m = Ω(n
√
s) solution pair

halves, our solution pair halves are sampled independently with replacement from the set
of s solution pairs. Thus the chance we recover no solution pair is at most e−Ω(n) by the
Birthday Bound (Lemma 1). Conditioning on the event that our lists contain a solution
pair, a deterministic search over the two lists guarantees recovery.

3.3.5 Proof of Runtime

Proposition 2 (Runtime of Algorithm 3.9). Fix C = [±d] or [−d : d], ε > 0, x̂ ∈ |C|(1±δ)n

for ε and δ = δ(ε) sufficiently small, and τ = o(nx̂). Define C ′, π′ and τ ′ with respect to
x⃗ ∼ [0 : x̂− 1]n as in (3.104), (3.105), and (3.106).

The algorithm outlined in Algorithm 3.9, when implemented as described below and in
the proof of Proposition 1, runs in time |C|Λ(|C|)n+O(εn), where Λ is defined as in (3.1).

90

Tim Randolph Columbia University

Proof. Steps 0 and 1(a) of Algorithm 3.9 are subexponential. We begin by describing the
implementation of steps 1(b) and 1(c), in which we create the lists L1 and L2 efficiently.

The set HCV (C ′n[π′]) is far too large for us to enumerate it in full, so we must come up
with another way to enumerate HCVs whose signatures fall into a certain residue class r. We
can accomplish this via dynamic programming. Construct a n × p table in which each cell
(i, j) ∈ [n]× [p] stores the number of coefficient vectors c⃗ ∈ C ′i such that c⃗ ·x[i] = j (mod p);
that is, the number of coefficient vectors which assign nonzero coefficients to only the first i
inputs and whose signatures fall into the residue class j. Within each cell, we partition the
total number of coefficient vectors into a sub-array of size poly(n) that indicates how many
coefficient vectors match each of the poly(n) possible assignment profiles.

We observe that each cell (i, j) can be filled by consulting the cells

(i− 1, j − cxi (mod p))

for each c ∈ C ′. As a result, computing the value in each cell takes time O|C′|(poly(n)), and
filling out the entire table takes time takes time O∗(p).

The dynamic programming table allows us to sample uniformly at random from HCVs in
HCV (C ′n[π′]) that have signatures that fall into the residue class r (mod p). To do this, we
begin at cell (n, r) and consider only those coefficient vectors indexed by assignment profiles
corresponding to HCVs. We sample a coefficient c ∈ C ′, weighting by the number of half
coefficient vectors that assign the coefficient c to xn. We then backtrack to cell (n−1, r−cxn

(mod p)). We continue this weighted backtracking process until we recover a single HCV
sampled uniformly at random from all HCVs in HCV (C ′n[π′]) whose signatures fall into the
residue class r (mod p) recovered.

Step 1(d), which sorts L1 and L2 by signature, takes time

O ((|L1|+ |L2|) · log(|L1|+ |L2|)) = O∗(|L1|+ |L2|).

This is exceeded by the deterministic solution recovery procedure performed in Step 1(e).
The final step, Step 1(e), searches L1 ×L2 for a matching pair. Our recovery procedure

is exactly as described in Algorithm 1.1, with one additional step: in addition to finding a
pair of HCVs h⃗ and h⃗′ such that

h⃗ · x⃗ + h⃗′ · x⃗ = τ⃗ ′,

we must also check to make sure that h⃗ and h⃗′ are a solution pair; that is, h⃗ and h⃗′ assign
nonzero coefficients to disjoint subsets of the input.

We refer to a pair of HCVs h⃗ and h⃗′ that satisfy h⃗ · x⃗+ h⃗′ · x⃗ = τ⃗ ′ but are not a solution
pair as a pseudosolution pair. Although checking and discarding a single pseudosolution pair
takes time poly(n), our recovery procedure must check them all. The total runtime of step
1(e) is thus

O∗(max(|L1|, |L2|, ps(L1,L2)),

91

Tim Randolph Columbia University

where ps(L1,L2) denotes the number of pseudosolution pairs.
The total runtime of the algorithm is thus bounded by Steps 1(b) and (c), the time it

takes to create the table, and Step 1(e), the time it takes to search for a solution pair. We
divide the remainder of the proof into two cases based on the choice of pmax in Step 0 of
Algorithm 3.9.

Case 1: pmax = a/n. In this case, we sample all HCVs that fall into the residue classes r
and r−τ ′ (mod p). Under the assumption that (p, r) is a good pair as defined in Lemma 17,
this takes time O∗(b/p). If there are more than O(bn2/p) elements in our residue class, we
know that (p, r) is not a good pair and abort the loop.

To bound the number of pseudosolutions in Case 1, we can apply linearity of expectation
over all distinct pairs of half coefficient vectors in HCV (C ′n[π′]). The expected number of
pseudosolutions over a random input x⃗, and uniformly random p and r, is

O∗
(
b2

x̂p

)
= b

p
· e−Ω(n),

where it follows from (3.101) that b is smaller than x̂ ∈ |C ′|(1±ε)n by a factor of eΩ(n). Our
choice of p and r is not uniformly random, however: we have conditioned on the choice
of a good p and r. Fortunately, we have from Lemma 17 that the set of good pairs is a

1
poly(n) -fraction of the entire set of pairs, so the expectation is the same up to a poly(n) factor
that is absorbed by the O∗ notation.

Thus, by Markov’s inequality, the probability that processing pseudosolutions takes time
Ω(b/p), larger than |L1|+ |L2| for a good residue class, is exponentially small. (If this bad
event does occur, the algorithm halts and returns ‘No’.)

Taking the maximum over Steps 1(b) and (c) and Step 1(e), our runtime in Case 1 is
thus

O∗
(

max
(
p,
b

p

))
= O∗

(
max

(
a,
b

a

))

= O∗
(
b

a

)
, (3.121)

where the first equality follows from the fact that p = Θ(a/n) in Case 1 and the second
equality follows from the fact that a/n ≤ b2/3a−1/3 in Case 1.

We proceed to bound (3.121). Once again let

α := |π
′|
n

for brevity. Recall from (3.100) and (3.101) that a(π′) = Θ∗(2|π′|) and that b(π′) = O∗(2Hπn),
where

Hπ = H

({
πc

2n

}
c∈C′\{0}

,
πh0

n

)

92

Tim Randolph Columbia University

≤ H

(
α

2(|C ′| − 1) , . . . ,
α

2(|C ′| − 1) , 1−
α

2

)

= α

2 · log2

(
2(|C ′| − 1)

α

)
+
(

1− α

2

)
· log2

(2
2− α

)

It follows from (3.100) and (3.101) that b2/3a−1/3 ≤ a/n when |C ′| ≤ 3, and thus we are al-
ways in Case 2 when |C ′| ≤ 3. We continue the runtime analysis of Case 1 on the assumption
that |C ′| ≥ 4.

By Lemma 16, we have that α satisfies

α ≤ 1− 1
|C ′|

+ ε

|C| − 1 .

Applying (3.100) and (3.101) yields the following bound on b/a:

b

a
:= 2H1n, where H1 := H1(α) = α

2 · log2

(
2|C ′| − 2

α

)
+ 2− α

2 · log2

(2
2− α

)
− α.

When |C ′| ≥ 4, over the range α ∈ (0, 1− 1/|C ′|+O(ε)], the maximum of H1, and thus
of the algorithm, is

H1

(
1− 1
|C ′|

+O(ε)
)
≤ log2 |C ′|+ 1

C ′ −
|C ′|+ 1

2|C ′|
log2(|C ′|+ 1) +O(ε2).

Evaluating log|C′|(2H1) at this value, as ε→ 0, gives

1− |C
′|+ 1

2|C ′|
log|C′|(|C ′|+ 1) + 1

|C ′|
log|C′|(2),

the first of the two functions over which Λ takes the maximum.

Case 2: pmax = b2/3a−1/3. In this case, to create L1 and L2 we sample O∗(b/√ap) HCVs
independently and with replacement to create L1 and L2.

In Case 2, the expected number of pseudosolutions after subsampling is

O

 b2

x̂p
·
(
b/
√
ap

b/p

)2
 ≤ O

(
b

p
· p
a

)
· e−Ω(n) ≤ O

(
b

a

)
· e−Ω(n),

so processing pseudosolutions takes time O(b/a) with very high probability via Markov’s
bound. (Once again, we have conditioned on a good pair (p,r), but since good pairs make
up a 1/poly(n) fraction of the sample space, the expectation is upper-bounded by a poly(n)-
factor multiplied by the expectation over the entire sample space.)

93

Tim Randolph Columbia University

Taking the maximum over Steps 1(b) and (c) and Step 1(e), our runtime in Case 2 is
thus

O∗
(

max
(
p,

b
√
ap
,
b

a

))
= O∗(b2/3a−1/3), (3.122)

where the upper bound follows from substituting p = Ω(pmax) = Ω(b2/3a−1/3) and the fact
that a/n > b2/3a−1/3 in Case 2.

Once again, by Lemma 16, we have that α satisfies

α ≤ 1− 1
|C ′|

+ ε

|C| − 1 .

Applying (3.100) and (3.101) yields the following bound on b2/3a−1/3:

b2/3

a1/3 ≤ 2H2n, where H2 := H2(α) = α

3 · log2

(
2|C ′| − 2

α

)
+ 2− α

3 · log2

(2
2− α

)
− α

3 .

Recall that that b2/3a−1/3 ≤ a/n when |C ′| ≤ 3, and thus we in Case 2 only when |C ′| ≤ 3.
When |C ′| ≤ 3, over the range (0, 1 − 1/|C ′| + O(ε)] the maximum of H2, and thus of the
algorithm, is

H2

(
1− 1
|C ′|

+O(ε)
)
≤ 2

3 log2 |C ′| − |C
′|+ 1

3|C ′|
log2

(
|C ′|+ 1

2

)
+O(ε2).

Evaluating log|C′|(2H2) at this value as ε→ 0 gives

2
3 −
|C ′|+ 1

3|C ′|
log|C′|

(
|C ′|+ 1

2

)
,

the second of the two functions over which Λ takes the maximum.
Combining the runtime of the algorithm in the |C ′| ≤ 3 and |C ′| ≥ 4 cases gives the final

runtime of |C ′|Λ(n)n+O(εn).

3.3.6 Average-Case GSS on Dense Instances: Proof of Theorem 2
Proof of Theorem 2. Fix C = [±d] or C = [−d : d] and τ satisfying |τ | = o(x̂n). Consider
x̂ = |C|αn+o(n) for some α ∈ (0, 1) and fix a constant ε as specified in the statement of
Theorem 2. We proceed to show that Algorithm 3.9 can be used to solve this GSS instance
with high probability in time |C|αΛ(|C|)n+εn.

As x̂ = |C|n · 2−Ω(n), we can use the technique described in the proof of Theorem 1 to
reduce the problem to a new instance x⃗′ of average-case GSS with n′ elements satisfying

|C|(1−δ)n′ ≤ x̂ ≤ |C|(1−δ/2)n′ (3.123)

94

Tim Randolph Columbia University

for a constant δ > 0 that can be made arbitrarily small: In the C = [−d : d] case, we
can simply set x⃗′ = x⃗[n′] and assume the remaining elements will have their coefficients
set to 0. In the C = [±d] case, we perform the shrinking operation described in the proof
of Theorem 1, Case 2(c), assigning +1 and −1 coefficients to the elements of x⃗[n′+1:n] and
adjusting the target τ accordingly. In both cases, we create a new instance x⃗′, uniformly
distributed over [0 : x̂− 1]n′ , with a new target τ ′ such that |τ ′| = o(n′x̂), and for which any
solution can be easily converted to a solution for x⃗.

Set ε to be sufficiently small that Theorem 5 holds on x⃗′, and let δ = δ(ε) > 0 be the
constant determined by ε in Theorem 5. Run the algorithm in Theorem 5 on x⃗′ for every
profile π and return any solution found (or “no solution” if no solution is found for any profile
π). Because there are polynomially many assignment profiles, this takes time

O∗(|C|Λ(|C|)n′+ξn) = O∗(|C|(αΛ(|C|)/(1−δ)+ε/2)n+o(n)),

where we use the fact that
n′ ≤ α

1− δ ,

which follows from (3.123). For sufficiently small δ, this is dominated by |C|αΛ(|C|)n+εn.
Taking a union bound over the chance that the algorithm in Theorem 5 fails on any

assignment profile yields a success probability of 1 − e−Ω(n) on x⃗′. In the C = [−d : d]
case, x⃗′ has a solution with probability 1− e−Ω(n) by Theorem 3, and thus we solve x⃗ with
probability 1 − e−Ω(n). In the C = [±d], d > 1 case, x⃗′ has a solution with probability at
least 1 − o(1) by Theorem 4. By Corollary 3, there is a solution with probability at least
1− o(1) over the randomness of x⃗′ in the C = [±1] case if ∑i xi has the same parity as τ , as
the shrinking procedure preserves the parity of ∑i xi− τ . Thus we solve x⃗ with probability
1− o(1) in this case.

3.4 Generalized Number Balancing
The Number Balancing problem attempts to divide n numbers in the real range [0, 1] into
two sets in a way that minimizes the difference between the two sums. The problem can
be thought of as the optimization version of GSS on C = [±1]. We introduce the following
generalized version.

Problem 7: Generalized Number Balancing (GNB)

Input. A vector y⃗ = (y1, y2, . . . , yn) ∈ [0, 1]n, a coefficient set C ⊂ Z, and a precision
parameter δ ∈ (0, 1].
Output. A coefficient vector c⃗ ∈ Cn that satisfies |⃗c · y⃗| ≤ δ, or “no solution” if no
solution exists.

95

Tim Randolph Columbia University

In the average-case version of this problem, we consider inputs sampled uniformly at
random from [0, 1]. In [KK82], Karmarkar and Karp achieved precision

δ = n−Ω(log(n))

for worst-case Number Balancing in linear time. However, a solution with exponentially small
precision always exists by the pigeonhole principle. Scaling an average-case GNB instance
y⃗ by δ−1 and truncating the result yields a vector of integers that can be interpreted as
an instance x⃗ of GSS sampled uniformly from [0 : δ−1 − 1]n. A solution to x⃗ on C with
target τ = 0 is then a solution to y⃗ on C with precision δn. This insight yields the following
corollaries to Theorem 3, Theorem 4 and Corollary 3.

Corollary 5 (Optimal Precision for GNB with C = [−d : d]). Fix C = [−d : d] and any
ε > 0, and consider y⃗ ∼ [0, 1]n. Then we have

Pr
y⃗

[∃c⃗ ∈ Cn : |y⃗ · c⃗| < δn]
= 1− e−Ω(n) if δ = Ω∗(|C|−(1−ε)n)
≤ δ|C|n if δ ≤ |C|−n.

Corollary 6 (Optimal Precision for GNB on [±d]). Fix C = [±d] and any ε > 0, and
consider y⃗ ∼ [0, 1]n. Then we have

Pr
y⃗

[∃ c⃗ ∈ Cn : |y⃗ · c⃗| ≤ δn]
≥ 1− o(1) if δ = Ω∗(|C|−(1−ε)n)
≤ δ|C|n if δ ≤ |C|−n.

Moreover, the reduction from GNB to GSS allows us to use our algorithm to solve average-
case GNB on symmetric coefficient sets.

Corollary 7 (Algorithm for Average-Case GNB). For any α ∈ (0, 1), C = [±d] or C =
[−d : d], and any constant ε > 0, there exists an algorithm that solves average-case GNB
with precision |C|−αn in time

O(|C|αΛ(|C|)n+εn),
where Λ is as defined as in (3.1) and plotted in Figure 3.1. For uniform random y⃗ ∈ [0, 1]n,
the algorithm is correct with probability at least 1− e−Ω(n) for C = [−d : d] and 1− o(1) for
C = [±d].

Proof. We can convert y⃗ ∼ [0, 1]n into x⃗ ∼ [0 : n|C|αn − 1]n by scaling and then truncating
the input. (Note that this preserves uniform sampling.) Our structural results then guarantee
the existence of a solution to this GSS instance with probability 1 − e−Ω(n) or 1 − o(1)
depending on whether C = [−d : d] or C = [±d].11 If a solution exists, it corresponds to a
GNB solution with precision |C|−αn and can be recovered by Algorithm 3.9 with probability
1− e−Ω(n) in time O(|C|αΛ(|C|)n+εn) by Theorem 2.

11If C = {±1} and |x⃗|1 has odd parity, a solution that achieves target τ = 1 is fine.

96

Chapter 4

The Complementarity of Subset Sum
and Equal Subset Sum: Solving an
"Either-Or" Problem

This chapter uses material from [Ran23], and contains the following subsections:

• Structure vs. Randomness and Subset Sum. Brief introduction to the struc-
ture vs. randomness paradigm in mathematics and what a structure vs. randomness
approach to Subset Sum might look like.

• Summary of Results. An O∗(2(0.5−ε)n)-time algorithm for “Either-Or Subset Sum”,
the problem that, given an instance (X, t) of (Equal) Subset Sum, requires a correct
solution to either the Vanilla Subset Sum or Equal Subset Sum problems.

• Easy ESS Instances. Generalization of fast algorithms for unbalanced Subset Sum
(Section 2.3.3) to Equal Subset Sum.

• Subset Sum Instances That Are Easy ESS Instances. Proof that, if a Subset
Sum instance admits a solution that has few distinct subset sums, the same instance
has a small Equal Subset Sum solution.

• Proof of Theorem 6: The Algorithm for EOSS. Proof of the main theorem.

In the previous chapter, we observed the close relationship between Vanilla Subset Sum
and Equal Subset Sum: the two problems can be seen as the simplest specializations of the
Generalized Subset Sum problem, in which the goal is to assign coefficients to the input
vector to achieve a certain target. However, despite the seeming similarity between the two

97

Tim Randolph Columbia University

problems, we were forced to use two different analyses: it appears that the absence of the 0
coefficient is structurally significant.

The current chapter expands on the relationship between the two problems by proving
a surprising result: if our goal is to find a (possibly negative) solution to at least one of the
two problems, we can do so in time O(20.461n)—faster than the best worst-case algorithm for
either problem, and beneath the O∗(20.5n) Meet-in-the-Middle barrier.

4.1 Structure vs. Randomness and Subset Sum
In the context of this thesis, this chapter serves as motivation for the structure vs. random-
ness approach to Subset Sum problems. This broad paradigm, effectively popularized by
Tao [Tao07, Tao08], observes that large (or infinite) classes of mathematical objects can be
effectively handled by partitioning them according to the following strategy:

• Many objects are random-like; that is, their important properties are similar to those
that hold with high probability when we sample an element from the class uniformly
at random. If a theorem or algorithmic approach holds for a “typical” element of the
class, it is extended to cover all random-like elements.

• Some objects are structured; that is, they have properties that sharply distinguish them
from the “typical” element of the class. This structure, in turn, can often be exploited:
a strong structural guarantee can outline a distinctive subclass which can be handled
by an appropriate theorem or algorithmic approach.

• (Optional) Some objects that are neither structured nor random-like constitute an
“error term” on which an algorithm fails or to which a theorem does not apply.

Solving an algorithmic problem over a large class of instances using the structure vs. ran-
domness approach thus involves drawing the correct distinction between random-like and
structured instances, showing that the two can be distinguished by an algorithm, and de-
signing appropriate algorithms for each case.

In Chapter 3, we saw algorithms that solve Subset Sum problems exponentially faster
than Meet-in-the-Middle with very high probability over the selection of a random input
vector. This is equivalent to saying that there exists an algorithm which solves almost all
instances of GSS in time O∗(|C|(1−ε)n/2) for some constant ε > 0. Do the few instances on
which our existing algorithms fail share important structural features? If so, following the
logic of the structure vs. randomness approach, we might hope to break the worst-case Meet-
in-the-Middle barrier by designing a specialized approach for these structured instances.

Other authors have considered variations on this theme in the context of Subset Sum. In
2015, Austrin, Kaski, Koivisto, and Nederlof showed that Subset Sum instances in which the

98

Tim Randolph Columbia University

number of subsets adding to any given integer is small admit O∗(2(1/2−ε)n)-time solutions for
some ε > 0 [AKKN15]. We can view this as a Subset Sum result for a class of random-like
instances: those in which a certain “anticoncentration” of sums is guaranteed. In a follow-
up work, the same authors improved on their previous results and in addition showed that
instances in which many subsets add to a given integer (a structured class) can be solved
in time O∗(2(1/2−ε)n) as well [AKKN16]. Unfortunately, a large class of difficult Subset Sum
instances remains.

Viewed as a structure vs. randomness result for the Vanilla Subset Sum and Equal Subset
Sum problems, this chapter’s results can be summarized as follows:

1. Instances of Subset Sum that are highly structured, in the sense that they have a
solution that admits few distinct subset sums, correspond to s easy instances of ESS
(Proposition 3).

2. Instances of Subset Sum that are random-like, in the sense that they do not produce
many sets with duplicate sums over the run of a Representation Method-style algorithm
for Subset Sum, are solved with high probability over the randomness internal to the
algorithm (Theorem 6).

Or, more succinctly, instances of Subset Sum that are “structured enough” to be difficult to
solve in time O∗(2(1/2−ε)n) (using known approaches) have useful features that allow ESS to
be solved in time O∗(2(1/2−ε)n).

4.2 Summary of Results
Formally, we consider the following hybrid problem:

Problem 8: Either/Or Subset Sum (EOSS)

Input: A Subset Sum instance X = {x1, x2, . . . , xn}, t.
Output: Either a solution to the Subset Sum problem on X, t, or a solution to the
Equal Subset Sum problem on X.

Recall the definition of GSS: given input vector x⃗, target t and a coefficient set C, select
a coefficient vector c⃗ ∈ Cn such that c⃗ · x⃗ = t. In Subset Sum, C = {0, 1}; in Equal Subset
Sum, C = {−1, 0, 1} (and, usually, t = 0). Thus Either/Or Subset Sum can be thought of as
the task of solving Generalized Subset Sum on either of the two smallest natural coefficient
sets.

The problem also resembles a “sum-flavored” specialization of the Pigeon problem, which
defines the complexity class PPP [Pap94]. Pigeon asks us, given a circuit C : {0, 1}n →

99

Tim Randolph Columbia University

{0, 1}n, to find either an input that maps to 0 or two inputs that collide. (The existence
of a solution is guaranteed by the pigeonhole principle.) Consider the problem Sum-Pigeon,
where the input is a Subset Sum instance X, t, and the goal is to find either an input that
sums to t (mod 2n) or two inputs that collide (mod 2n). This is equivalent to solving
Pigeon on the circuit C(X) : {0, 1}n → {0, 1}n that sums elements of X indicated by input
bits and gives their sum (less t, mod 2n) as an output. Positive solutions to EOSS then
correspond to Sum-Pigeon solutions. However, Sum-Pigeon differs from EOSS in that a
solution is guaranteed by the pigeonhole principle, and negative solutions (‘No’ answers) are
not allowed.

The main algorithmic result of this chapter is as follows:

Theorem 6. EOSS can be solved in time O∗(20.461n) with probability 1 − o(1) and no false
positives.

We note that this algorithm is faster than both the Meet-in-the-Middle barrier and
the best worst-case algorithm for Equal Subset Sum, the O∗(30.488n)-time algorithm due
to Mucha, Nederlof, Pawlewicz and Węgrzycki [MNPW19].

The proof of our main result adapts the Representation Method to the worst-case setting
by carefully handling unfriendly instances. As such, we recommend that the reader is familiar
with Section 1.1.2 before continuing. The algorithm proceeds as follows:

1. First, we use a modified Meet-in-the-Middle approach to solve the Subset Sum instance
if there exists a small Subset Sum solution.

2. Second, we use a modified Meet-in-the-Middle approach to solve the Equal Subset Sum
instance if there exists a small ESS solution.

3. We prove that Subset Sum instances that admit at least one solution S with §1/2(S)
very small also have a small Equal Subset Sum solution (Lemma 18). Thus, if the
previous step fails, it follows that our instance has a solution with many distinct small
subset sums.

4. Conditioning on the existence of a Subset Sum solution S with §1/2(S) relatively large,
we can adapt the Representation Method to the worst case:

(a) The existence of many distinct small subset sums ensures that our partial can-
didate solutions hash “nicely” into the residue classes of a large random prime:
with high probability, many pairs (r, t− r) of residue classes contain at least one
solution pair.

(b) The solution recovery step, which uses Meet-in-the-Middle, fails only if our residue
classes contain many partial candidate solutions with the same sum. However, if
this occurs, we have a solution to the Equal Subset Sum problem.

100

Tim Randolph Columbia University

4.2.1 Solving EOSS Using Techniques From [AKKN16]
After the first draft of this chapter was completed, a fruitful discussion with Jesper Nederlof
revealed alternative algorithms for EOSS that can be achieved by leveraging techniques from
prior work.

A solution to “Decision EOSS”, the EOSS variant in which the algorithm is not required
to return a solution to Subset Sum or ESS in the ‘Yes’ case, is implicit in Theorem 1.1 of
[AKKN16]. Applying Theorem 1.1 with ε = 1/6 in a black-box manner gives an algorithm
for this problem that runs in time O∗(223n/48) = O∗(20.480n).

More significantly, a careful modification of Algorithm 1 in [AKKN16] gives a solution
to EOSS in time O∗(20.421n). To achieve this runtime, set µ = 0.421 and select an arbitrary
input subset M of size µn. Check whether M contains any duplicate subset sums and return
the resulting ESS solution if so. If M contains no duplicate subset sums, run Algorithm 1.
The proof of Proposition 3.4 can then be modified with the additional assumption that the
bucket size of M is 1. Substituting γ = 1 and µ = 0.421 results in the claimed runtime; the
optimal value of µ follows from balancing the time to enumerate §(M) against the dominant
2(0.5−0.189µ)n term in the runtime of Algorithm 1.

Whether further improvements can be achieved by combining the two approaches is an
intriguing question for future research.

4.3 Easy ESS Instances
Recall our definition of the size of a GSS solution c⃗ as the number of nonzero coefficients.
In the case of Equal Subset Sum, in which C = {−1, 0, 1}, this corresponds to |A|+ |B| for
two disjoint subsets of the input such that Σ(A) = Σ(B). When an instance of ESS admits
a small solution, Meet-in-the-Middle can be implemented efficiently (c.f. Lemma 5):

Lemma 18 (ESS Instances with Small Solutions are Easy; c.f. [MNPW19] Theorem 3.3).
Let X be an instance of Equal Subset Sum. There is a deterministic algorithm that recovers
a solution (A,B) with |A|+ |B| = αn, if one exists, in time

O∗
((n

2
αn
4 ,

αn
4 ,

(1−α)n
2

))
= O∗

(
2

(H(α)+α)n
2

)
.

Proof. Fix a solution (A,B) satisfying |A| + |B| = αn. The proof follows by adapting
Meet-in-the-Middle to Equal Subset Sum in the natural way.

Using Lemma 4, let (Y, Z) be a partition of the input such that

|(A ∪B) ∩ Y | = αn

2 .

101

Tim Randolph Columbia University

Create the lists L1 and L2 by enumerating all subsets of size at most

αn+ 1
2

of Y and Z, respectively, and then enumerating every possible partition of these subsets into
candidates for (A ∩ Y,B ∩ Y) and (A ∩ Z,B ∩ Z), respectively.

At this point we observe that

|L1|, |L2| = O∗
(

2
(H(α)+α)n

2

)
by (2.6) and that our choice of the partition (Y, Z) guarantees that L1 × L2 contains the
solution. Finally, we run Meet-in-the-Middle (Algorithm 1.1) on the two lists to recover
(A,B) in in time

O(|L1|+ |L2|) = O∗
(

2
(H(α)+α)n

2

)
.

4.4 Subset Sum Instances Which Are Easy ESS In-
stances

The concept of additive structure in sets is typically measured by counting the number of
element pairs or subsets that add to the same sum (Section 1.1.3). We exploit the insight that
the Subset Sum instances on which average-case approaches fail have solutions with duplicate
subset sums, which in turn implies the existence of small Equal Subset Sum solutions.

Proposition 3. Let (X, t) be a Subset Sum instance with a solution1 S ⊆ X such that

|§1/2(S)| ≤ 2|S|−βn,

for some β, S satisfying β < |S|/n and β, |S|/n ∈ [0.12, 0.5].2
Then X has an Equal Subset Sum solution A,B satisfying

|A|+ |B| ≤ H−1(1− 2β)n+ o(n).

Proof. Let X and S be as in the proposition statement. S is unusual: it has Θ∗(2|S|) subsets
of size |S|/2 (“halfsets”), but few distinct “halfsums”: |§1/2(S)| ≤ 2|S|−βn. This implies the
existence of some number s such that Ω∗(2βn) halfsets add to s.

1Strictly speaking, this holds for any subset S ⊆ X.
2This range is approximate. We will not need to choose β, |S|/n at the limits of the feasible set to optimize

the runtime of our algorithm.

102

Tim Randolph Columbia University

Define the set collection

Ss
1/2 :=

{
I ⊂ S

∣∣∣∣∣ |I| = |S|2 ,Σ(I) = s

}
;

that is, the set of halfsets of S that add to s. Associate each member I ∈ Ss
1/2 with a

Hamming ball of radius
H−1(1− 2β)n

2
in {0, 1}|S|, centered at the binary indicator vector of I. Every such ball contains(

|S|
H−1(1−2β)n

2

)
= Θ∗

(
2H

(
H−1(1−2β)n

2|S|

)
|S|
)

elements by Stirling’s Approximation (2.3).
We would like to show that the total volume of the collection of Θ∗(2βn) balls is greater

than |{0, 1}|S|| = 2|S|, which implies that two balls must overlap. By comparing the exponents
of the two quantities, we can see that this is true when the equation

H

(
H−1(1− 2β)n

2|S|

)
|S|+ βn > |S| (4.1)

holds, or, equivalently, for |S| and β such that the function

g(x, b) := H

(
H−1(1− 2b)

2x

)
x+ b− x satisfies (4.2)

g

(
|S|
n
, β

)
: ≥ 0. (4.3)

Experimental evaluation shows that (4.3) holds when βn < |S| and βn, |S| ∈ [0.12, 0.5] · n.
Figure Figure 4.1 plots g(|S|/n, β) as a function of |S|/n for the value β ≈ 0.139 we choose
for Algorithm 4.2 below.

The equation is tight for any β < 0.5 when |S| = 0.5n, and thus adding a small sublinear
factor to our radius ensures it holds in all the cases claimed.

Two overlapping Hamming balls correspond to two subsets of S that add to the same
value s and differ in at most

2 · H
−1(1− 2β)n

2 + o(n) = H−1(1− 2β)n+ o(n)

elements. Constructing an Equal Subset Sum solution A,B from their difference gives the
result.

103

Tim Randolph Columbia University

Figure 4.1: Plot of g(|S|/n, β) as a function of |S|/n, for fixed constant β satisfying H−1(1−
2β) = 0.2, in the range [β, 0.5].

104

Tim Randolph Columbia University

Procedure EitherOrSubsetSum(X, t)

Input: An integer multiset X = {x1, x2, . . . , xn} and an integer target t.
Setup: Set constants γ and β as in (4.4) and (4.6).

0. Solve the Subset Sum instance (X, t) if there exists a solution of size at most γn.

1. Solve the ESS instance X if there exists a solution of size at most
H−1(1− 2β)n+ o(n).

2. For s∗ ∈ [γn : n/2]:

3. Repeat poly(n) times:

4. Select a uniformly random (s∗ − βn)-bit prime p and residue r ∼ [p].

5. Enumerate L := {Q ⊆ X : |Q| = s∗/2,Σ(Q) = r (mod p)}, and
R := {Q ⊆ X : |Q| = s∗/2,Σ(Q) = t− r (mod p)}.

If either list has more than O∗(2H(s∗/2n)n/p) items, return to Item 4.

6. Sort L and R by sum and return any ESS solutions.

7. Run Meet-in-the-Middle on L and R, returning any solution.

8. Return ‘No’ (no Subset Sum solution).

Figure 4.2: The EitherOrSubsetSum algorithm.

4.5 Proof of Theorem 6: The Algorithm for EOSS
Proof. Fix constants

γ := 0.15 and (4.4)
β ≈ 0.139 (4.5)

so that β satisfies the equation
H−1(1− 2β) = 0.2. (4.6)

(β is chosen to optimize the runtime of Algorithm 4.2, but γ is not tightly constrained: any
value within a small constant range works equally well.) These constants define the cutoffs
for two deterministic preprocessing steps designed to solve easy instances of EOSS:

105

Tim Randolph Columbia University

1. First, we use Meet-in-the-Middle to deterministically solve the Subset Sum instance if
there exists a solution of size at most γn. This takes time

O∗
((

n/2
γn/2

))
= O∗

(
2H(γ)n/2

)
(4.7)

by Lemma 5.

2. Second, we use Lemma 18 to deterministically solve the Equal Subset Sum instance in
time

O∗
(

2
1−2β+H−1(1−2β)

2 n
)

(4.8)

if it has an Equal Subset Sum solution of size at most H−1(1−2β)n+o(n) = 0.2+o(n).

If our preprocessing steps do not find a solution, it follows from Lemma 5 and Lemma 18
that any Subset Sum solution S ⊆ X satisfies

|S| ≥ γn (4.9)

and
|§1/2(S)| ≥ 2|S|−βn, (4.10)

as we have ruled out Subset Sum solutions with |S| < γn and Equal Subset Sum solutions
with |A|+ |B| ≤ H−1(1− 2β)n+ o(n).

Fix a solution |S| satisfying (4.9) and (4.10), and guess the size of a solution s∗ without
loss of generality (as described in Section 2.3.1) at the cost of an O(n) factor in the final
runtime.

Next, we apply the Representation Method. Our strategy will be to look for pairs of sets
in the set collection

X|S|/2n :=
{
I ⊂ X

∣∣∣∣∣ |I| = |S|2
}

(4.11)

that can be patched together to make a Subset Sum solution of size |S|.
Thus our search space has size

|X|S|/2n| = Θ∗
(
2H(|S|/2n)n

)
by Stirling’s Approximation (2.3). This is much larger than 2n/2 when |S| ≈ 0.5n. However,
(4.10) will allow us to resolve this difficulty via a Representation Method-style approach.

Let p be a prime number selected uniformly at random from all (|S| − βn)-bit primes.
Our first task is to find a way to efficiently list the elements of X|S|/2n that add to a given
residue r (mod p). We accomplish this by building a dynamic programming table T of
dimension n× p. In the cell T [k, r], for each j ∈ [|S|/2], we store the number of subsets of

106

Tim Randolph Columbia University

{x1, x2, . . . , xk} of cardinality exactly j that sum to r (mod p). Filling out the table takes
time O∗(p), and by backtracking, we can efficiently enumerate all subsets of X of size at most
|S|/2 that sum to r (mod p), for any residue r. Sample a residue class r ∈ [p] uniformly at
random and use T to enumerate all quartersets that sum to r and t− r. Call these two lists
L and R, respectively.

Suppose our input (X, t) admits a Subset Sum solution S with |S| ∈ [γn, n/2], and
consider the branch of the algorithm that correctly guesses |S|. In this case, we call r a
‘good’ residue class if

1. there exists at least one disjoint pair of quartersets Q1, Q2 such that Q1 ∪ Q2 = S,
Σ(Q1) = r (mod p), and Σ(Q2) = t− r (mod p), and

2. the lists L and R have length O∗(2H(|S|/2n)n/p).

Claim 11. If a solution S with |S| ∈ [γn, n/2] exists, condition (1) is true for an Ω(1/n2)-
fraction of residue classes with with probability 1− o(1) over p.3

Proof: Observe that by Lemma 8 that the expected number of pairs x, y ∈ §1/2(S)×§1/2(S)
with |x− y| = 0 (mod p) is

|§1/2(S)|2 log(2O(n))
p

= O

(
n|§1/2(S)|2

p

)

by linearity of expectation, where we use Section 2.3.4 to assume without loss of generality
that inputs have size 2O(n). By Markov’s inequality, we have that the number of collisions is

O

(
n2|§1/2(S)|2

p

)
(4.12)

with probability 1− 1/n over the choice of p.
This in turn implies that |§1/2(S) (mod p)| = Ω(p/n2). To see this, consider for contra-

diction the case in which the statement is false and count the minimum number of collisions
which occur. Because

|§1/2(S)| ≥ Ω(p)
by (4.10), even under the distribution of §1/2(S) over residue classes that minimizes collisions,
the number of collisions would still be ω(n2|§1/2(S)|2/p), violating (4.12). Thus (1) holds
for an Ω(1/n2)-fraction of residue classes with probability 1−o(1) over the choice of p. This
completes the proof of the claim. ■

Conditioning on p such that (1) holds for an Ω(1/n2)-fraction of residue classes, and on
choosing r satisfying (1), Condition (2) occurs with probability at least 1 − 1/poly(n) over

3C.f. Lemma 9, which proves a similar statement for a set Y satisfying |Y | log2(diam(Y)) ≤ nkp.

107

Tim Randolph Columbia University

r for an arbitrarily small polynomial by Markov’s inequality. By repeating our choice of p
and r a total of poly(n) times, we can raise the chance of satisfying both (1) and (2), and
thus choosing a good residue class, to 1− e−Ω(n).

Next, we sort the elements of L and R by their sum, in anticipation of running Meet-in-
the-Middle. If either list contains two sets with the same sum, we can halt and return these
sets as a solution to Equal Subset Sum. If neither L nor R contains duplicate sums, we run
Meet-in-the-Middle on the two lists in time

O∗(|L|+ |R|) = O∗(2H(|S|/2n)n−p),

recovering a solution successfully if we have chosen a good residue class. Thus if the algorithm
completes the loop over all poly(n) choices of s∗, p, and r without finding a Subset Sum or
ESS solution, it can return ‘No’, indicating that there is no Subset Sum solution, and be
correct with high probability.

The total runtime of the algorithm is the sum of the three main subprocedures, with (2)
and (3) carefully balanced by the choice of β:

1.
O∗(2H(γ)n/2) = O∗(20.305n),

the time taken to check for small Subset Sum solutions (Step 0),

2.
O∗(2

1−2β+H−1(1−2β)
2 n) = O∗(20.461n),

the time taken to check for small Equal Subset Sum solutions (Step 1), and

3.
max

|S|∈[γn,n/2]
O∗(2H(|S|/2n)− |S|

n
+β)n) = O∗(20.4609n),

the runtime of Meet-in-the-Middle (Steps 2-8).

108

Chapter 5

Beyond the Meet-in-the-Middle
Barrier: Log Shaving for Subset Sum

This section introduces results from [CJRS23]. Although what follows has been refurbished
for inclusion in this thesis, the arguments presented represent the collaborative efforts of the
four original authors: Xi Chen, Yaonan Jin, Rocco A. Servedio, and I.

This chapter contains the following subsections:

• Circuit RAM and Word RAM. An introduction to two common memory models
in the context of log shaving for Subset Sum.

• Summary of Results. Three algorithms that shave factors of n0.5/ log(n), n0.01, and
n0.502 off the O(2n/2) running time of Meet-in-the-Middle

• Ω(n0.5/ log n)-Factor Speedup via Bit Packing. Adaptation of the Bit Packing
approach of [BDP05] to the Subset Sum problem.

• Ω(n0.01)-Factor Speedup via Orthogonal Vectors and the Representation
Method. A small polynomial speed-up achieved by memoizing very small instances
of the Orthogonal Vectors problem.

• Subset Sum in Time O(2n/2 · n−0.5023). A careful combination of the previous two
approaches.

Given the longstanding difficulty of achieving a 2(1/2−ε)n-time worst-case algorithm for
Subset Sum, it is natural to consider the relaxed goal of achieving some nontrivial speedup
over Meet-in-the-Middle. This chapter overviews the first results of this type. We give
three different randomized algorithms for worst-case Subset Sum, each of which runs in time
O(2n/2 · n−γ) for a specific constant γ > 0 in standard word RAM and circuit RAM models.

109

Tim Randolph Columbia University

Our fastest algorithm, which combines techniques from our other two algorithms, runs in
time O(2n/2 · n−0.5023).

The improvements we achieve over the O(2n/2) runtime of Meet-in-the-Middle are anal-
ogous to “log shaving” improvements on the runtimes of polynomial-time algorithms. As
noted in the introduction, this progress comes with an important caveat: unlike other bar-
riers to which log shaving techniques have been applied, there is no strong evidence that
an O(2(1/2−ε)n)-time algorithm for Subset Sum is impossible. In our view, the modest goals
of this chapter are justified by the fifty years of effort that have passed without improve-
ments on the runtime of our best algorithm for worst-case Subset Sum. Moreover, we remain
optimistic that the techniques demonstrated below will eventually lead to future, perhaps
superpolynomial, improvements.

5.1 Circuit RAM and Word RAM
Unlike in previous chapters of this thesis, in this chapter we are concerned with subexpo-
nential improvements in runtime. Specifically, the factors by which we improve on Meet-in-
the-Middle are comparable to the bit length of the input (in both cases, poly(n)). For this
reason, we pause to explain our memory model in more detail.

Given that Subset Sum inputs are upper-bounded by the size of the target t without
loss of generality, it is natural to adopt a memory model with word length ℓ = Θ(log t) so
that each input integer can be stored in a single word. This is the framework used in the
work of Pisinger [Pis03], who studied dynamic programming approaches for Subset Sum in
the word RAM model. We also note that this memory model is analogous to the standard
RAM model that is commonly used for problems such as 3SUM (see e.g. [BDP05]), where it
is assumed that each input value is at most poly(n) and hence fits into a single O(log n)-bit
machine word.

This model lets us consider arbitrary input instances of Subset Sum with no constraints on
the size of the input integers. If t = 2o(n), standard dynamic programming algorithms [Bel66]
solve the problem in time O(nt) = 2o(n), which supersedes our poly(n)-factor improvements
over Meet-in-the-Middle; hence throughout the chapter we assume t = 2Ω(n). It is arguably
most natural to think about instances in which t = 2Θ(n), in which case ℓ = Θ(n), and we
encourage the first-time reader to imagine ℓ = Θ(n) for easy digestion. However, we can use
the bit length reduction described in Section 5.3.1 to reduce much larger inputs to O(n) bits
without loss of generality. If inputs are extremely large (for example, 22n), a word length of
Θ(log t) dwarfs the time it takes to solve the problem.

We consider runtime in two standard variants of the RAM model. The first is circuit
RAM ; in this model, any operation that maps a constant number of words to a single word
and has a poly(ℓ)-size circuit with unbounded fan-in gates can be performed in time propor-
tional to the depth of the circuit. Consequently, in the circuit RAM model, AC0 operations

110

Tim Randolph Columbia University

on a constant number of words can be performed in constant time, and multiplying, per-
forming modular division, etc., on two ℓ-bit words can be performed in time O(log ℓ). The
second is word RAM, in which the usual arithmetic operations, including multiplication,
are assumed to take unit time, but arbitrary AC0 operations are not atomic operations on
words. We present each of our algorithms for the stronger circuit RAM model,1 and explain
adaptations that give corresponding word RAM algorithms.

5.2 Summary of Results

Our first result improves on the O(2n/2)-time implementation of Meet-in-the-Middle de-
scribed in Algorithm 1.1 using a “bit packing” approach.

Theorem 7. There exists an algorithm that solves Vanilla Subset Sum with constant proba-
bility in time O(2n/2 ·n−1/2 · log n) in the circuit RAM model and Õ(2n/2 ·n−1/2) in the word
RAM model.

The algorithm, sketched in simplified form in Algorithm 5.1, works by adapting the
bit packing trick, a technique developed by Baran, Demaine, and Pǎtraşcu [BDP05] for the
3SUM problem, to Meet-in-the-Middle. The idea is to compress the two lists of partial subset
sums used in Meet-in-the-Middle by packing hashes of multiple values into a machine word,
while preserving enough information to make it possible to run a Meet-in-the-Middle-style
algorithm on the lists of hashed and packed values. This results in a runtime savings over
performing Meet-in-the-Middle on the original lists because processing every pair of words,
each of which contains multiple hashed values, takes constant expected time in the circuit
RAM model and can be memoized to take constant time in the word RAM model.

However, even if the initial hashing and packing step takes time linear in the size of the
lists, this is still too slow if the lists of partial subset sums have length Ω(2n/2). To get
around this, we set aside a small set D before constructing the list of partial subset sums.
We then solve many Subset Sum instances, each with target t − d for a certain d ∈ §(D),
re-using the packed lists each time. Setting |D| = log(n) results in the best possible runtime.

Theorem 8. There exists an algorithm that solves Vanilla Subset Sum with constant prob-
ability in time O(2n/2 · n−γ) for a constant γ > 0.01 in the circuit RAM and word RAM
models.

Our second algorithm achieves a speedup of Ω(nγ) over Meet-in-the-Middle for a constant
γ > 0.01. While this is a smaller speedup than that achieved by the bit packing approach,

1Note that any algorithm in the word RAM model can be simulated in the circuit RAM model with no
more than an O(log ℓ)-factor slowdown.

111

Tim Randolph Columbia University

our second algorithm is distinguished by not using “bit tricks”. Instead, it combines Meet-
in-the-Middle with the Representation Method to reduce the Subset Sum problem to many
small instances of Orthogonal Vectors.

The algorithm begins by partitioning the input X = A⊔B ⊔C into two large subsets A
and B and one small subset C of size approximately |C| ≈ log n. We then use sets consisting
of |A|/2 elements of A and |C|/4 elements of C (respectively, |B|/2 elements of B and |C|/4
elements of C) as our partial candidate solutions and apply the Representation Method (see
Section 1.1.2), producing two lists of partial candidate solutions that fall into complementary
residue classes modulo a large random prime p.

The key to adapting the Representation Method to the worst case, for this algorithm, is
the fact that partial candidate solutions can overlap only in elements of C. C is intentionally
very small, which lets us ensure that it has the properties required for the Representation
Method via a deterministic preprocessing step. This results in a lower bound on the prob-
ability that our two lists of partial candidate solutions contain a solution pair, if a solution
exists.

The recovery phase applies Meet-in-the-Middle, with the only snag occurring when many
partial candidate solutions have the same sum. In this case, we need to search for a matching
pair of partial candidate solutions that that do not use any element of C multiple times.
We can do this by observing that the problem of searching for a disjoint pair in a collection
of sets of size O(log(n)) is equivalent to solving a small instance of Orthogonal Vectors.
By considering Orthogonal Vectors on inputs of size at most ε log n as a Boolean function,
we can solve the problem by memoization: we simply tabulate all possible outputs in time
O(2εn).

Theorem 9. There exists an algorithm that solves Vanilla Subset Sum with constant prob-
ability in time O(2n/2 · n−(1/2+γ)) for a constant γ > 0.0023 in the circuit RAM and word
RAM models.

Our fastest algorithm uses a delicate combination of the techniques from the previous
two results to obtain a runtime of O(2n/2 · n−0.5023). While the runtime improvement over
the previous theorem is not large, this algorithm demonstrates that by leveraging insights
specific to the Subset Sum problem, we can achieve time savings beyond what is possible
with more generic log shaving techniques.

This algorithm is complex due to a difficulty that arises in combining the previous two
algorithms. Our bit packing approach saves time by removing a subset D ⊆ X from the
input, then running a Meet-in-the-Middle variant on the resulting subinstance multiple times.
In contrast, our second approach runs a Meet-in-the-Middle variant on multiple subinstances
indexed by their residue class modulo a random prime p. This presents a problem: to get
the time savings from bit packing, we would like to reuse Subset Sum subinstances multiple
times, but to get the time savings from the Representation Method we need to build separate
subinstances with respect to each residue class (mod p) that contains elements of §(D). To

112

Tim Randolph Columbia University

solve this problem, we construct D in a way that ensures the elements of §(D) fall into few
residue classes.

5.3 Ω(n0.5/ log n)-Factor Speedup via Bit Packing
For our first algorithm we need the concept of a pseudolinear hash function. Such a function
maps a large range onto a much smaller domain while preserving linearity: collisions are
unlikely, and simple additive relationships continue to hold.

Given an integer m ≤ ℓ, we write hm : [2ℓ] → [2m] to denote the random hash function
defined as

hm(y) := (u · y (mod 2ℓ))≫ ℓ−m.

Here the input y is an ℓ-bit integer, u is selected uniformly at random from all odd ℓ-bit
integers, and ≫ denotes a bit shift to the right, i.e., dividing u · y (mod 2ℓ) by 2ℓ−m and
then truncating the result so that only the higher-order m bits remain.

This hash function hm(y) can be evaluated in time in time asymptotically equivalent to
multiplication: O(log ℓ) = O(log n) in the circuit RAM model and O(1) in the word RAM
model. Further, hm has the following useful properties.

Lemma 19 (Pseudolinear Hashing [DHKP97, BDP05]). The following hold for hm:

1. Pseudolinearity. For any two ℓ-bit integers y, z and any outcome of hm,

hm(y) + hm(z) ∈ hm(y + z)− {0, 1} (mod 2m).

2. Pseudouniversality. For any two ℓ-bit integers y, z with y ̸= z,

Pr [hm(y) = hm(z)] = O(2−m).

We are now prepared to present the first algorithm of the chapter.

Theorem 10. Algorithm 5.1 is a zero-error randomized algorithm for the Subset Sum prob-
lem with expected runtime

O(2n/2 · ℓ−1/2 · log ℓ) = O(2n/2 · n−1/2 · log n)

in the circuit RAM model.2
2We can easily convert Theorem 10 into a one-sided Monte Carlo algorithm such as that described in

Theorem 7 by halting and returning ‘No’ if runtime exceeds α ·2n/2 ·n−1/2 · log n for a large enough constant
α > 0.

113

Tim Randolph Columbia University

Procedure BitPacking(X, t)

Input: An integer multiset X = {x1, x2, . . . , xn} and an integer target t.
Setup: Draw a random hash function hm with m = 3 log ℓ.

0. Fix a partition X = A ⊔B ⊔D such that |D| = log ℓ and |A| = |B| = n−|D|
2 .

1. Enumerate the lists §⃗(A), §⃗(B), and §⃗(D) using Algorithm 2.1.

2. Create the lists hm(⃗§(A)) and hm(⃗§(B)) by applying hm element-wise to §⃗(A)
and §⃗(B).

3. Create the lists HA and HB by packing (ℓ/m) elements of hm(⃗§(A)) and
hm(⃗§(B)) into each ℓ-bit word of HA and HB, respectively (preserving sorted
ordering.)

4. For each t′ ∈ (t− §(D)):

5. Initialize indices i := 0 and j := |HB| − 1. While i < |HA| and j ≥ 0:

6. If there exist a pair of hashes (hm(a′), hm(b′)) ∈HA[i]×HB[j]
such that hm(a′) + hm(b′) ∈ hm(t′)− {0, 1} (mod 2m),
use Algorithm 1.1 to search for a solution

(a, b) ∈ §⃗(A)
[
iℓ

m
: (i+ 1)ℓ

m
− 1

]
× §⃗(B)

[
jℓ

m
: (j + 1)ℓ

m
− 1

]
such that a+ b = t′. Halt and return if a solution is found.

7. If
§⃗(A)

[
(i+ 1)ℓ
m

− 1
]

+ §⃗(B)
[
jℓ

m

]
< t′,

set i← i+ 1. Otherwise, set j ← j − 1.

8. If no solution was found, return ‘No’.

Figure 5.1: The Bit-Packing algorithm.

Algorithm 5.1 works by packing ℓ/m hashed values into a single word via our pseudolinear
hash function hm, for m = 3 log ℓ, while preserving enough information to run Algorithm 1.1
on the lists of hashed and packed values. This allows us to compare two length-(ℓ/m) sublists

114

Tim Randolph Columbia University

of §⃗(A) and §⃗(B) in constant expected time in the circuit RAM model, since each hashed
and packed sublist fits into a constant number of words, instead of in time O(ℓ/m). So far,
this is essentially the approach taken by [BDP05] in their bit-packing algorithm for 3SUM.
However, in our context the O(ℓ/m) speedup described above is offset by the following issue:
if we follow the original Algorithm 1.1 setup and take |A| = |B| = n

2 , the lists §⃗(A) and §⃗(B)
may have length Ω(2n/2), increasing the runtime.

To deal with this, we set aside a small set D ⊆ X of |D| = log ℓ many input elements
and solve the remaining subinstance X \D for each shifted target t′ ∈ (t−§(D)). Removing
the elements in D shortens the lists LA and LB, which are now formed from the elements
in X \ D, and allows us to enumerate and pack them quickly. Balancing the overhead of
solving each of these subinstances against the savings described earlier, we get the claimed
speedup Ω(ℓ1/2/ log ℓ) ≥ Ω(n1/2/ log n).

Steps 6 and 7 implement a subprocedure that we refer to, informally, as Block Meet-in-
the-Middle, which increments two pointers in a manner closely analogous to Algorithm 1.1.
The key difference is that each pointer indicates a word containing multiple packed hashes.
If Step 6 discovers two hashes that appear to correspond to a solution, we return to the
original (unpacked) list and use Algorithm 1.1 to recover a solution.

Proof of Correctness for Algorithm 5.1. The algorithm outputs “Yes” if and only if it recov-
ers a triple

(a, b, t′) ∈ §⃗(A)× §⃗(B)× (t− §(D))
satisfying a+ b = t′, so it never returns a false positive.

It remains to show that for any t′ ∈ (t − §(D)), we are guaranteed to find a shifted
solution (a, b) ∈ §⃗(A) × §⃗(B) such that a + b = t′, if one exists. Without loss of generality,
we consider two sublists

§⃗(A)
[
iℓ

m
: (i+ 1)ℓ

m
− 1

]
and §⃗(B)

[
jℓ

m
: (j + 1)ℓ

m
− 1

]

that contain such an (a, b) and that correspond to two packed words HA[i] and HB[j] for
some indices i and j.

By the same principle as the original Meet-in-the-Middle Algorithm (Algorithm 1.1), the
condition in Line 7 ensures that the algorithm will not step past either the packed word
HA[i] or the packed word HB[j] before reaching the other, so the algorithm must compare
these two packed words at some point.

By Lemma 19, we have

hm(a) + hm(b) ∈ hm(t′)− {0, 1} (mod 2m),

115

Tim Randolph Columbia University

satisfying the condition in Line 6. Thus we are guaranteed to find the shifted solution (a, b)
by running Algorithm 1.1 to check all pairs in

§⃗(A)
[
iℓ

m
: (i+ 1)ℓ

m
− 1

]
× §⃗(B)

[
jℓ

m
: (j + 1)ℓ

m
− 1

]
.

Proof of Runtime for Algorithm 5.1.

• Line 1 takes time O(2|A| + 2|B| + 2|D|) = O(2n/2 · ℓ−1/2 + ℓ) = O(2n/2 · ℓ−1/2) by
Lemma 2.

• Line 2 takes time (|⃗§(A)|+ |⃗§(B)|) ·O(log ℓ) = O(2n/2 · ℓ−1/2 · log ℓ), where O(log ℓ)
bounds the time for each evaluation of the hash function hm.

• Line 4 (the outer loop) is performed for at most |§(D)| ≤ 2|D| = ℓ iterations.

• Line 5 (the inner loop) is performed for at most

(|⃗§(A)|+ |⃗§(B)|) · 1
ℓ/m

= O(2n/2 · ℓ−3/2 · log ℓ)

iterations, since each iteration either increments i or decrements j.

• Line 6: Checking whether HA[i] and HB[j] contain a pair of hashes corresponding to
a potential solution requires a single AC0 operation on three words, which takes
constant time in the circuit RAM model.
If the two packed words contain at least one potential solution, we index back into
the unpacked lists §⃗(A) and §⃗(B) and run Algorithm 1.1 on the two length-(ℓ/m)
sublists. This takes time O(ℓ/m) = O(ℓ/ log ℓ).
The amount of time taken searching through §⃗(A) and §⃗(B) depends on the number
of potential solutions (essentially, hash collisions), which in turn is bounded by the
guarantees of our pseudolinear hash function. Note that the sequence of pairs of
words (HA[i], HB[j]) we compare is completely determined by LA and LB and is
thus independent of the random hash function hm. Thus by Lemma 19, each of the
(ℓ/m)2 pairs of hashed values in (HA[i], HB[j]) incurs a collision with probability
O(2−m). By a union bound, the expected time taken for Line 6 because of hash
collisions is at most

(ℓ/m)2 ·O(2−m) ·O(ℓ/m) = O(1/ log3(ℓ)) = o(1)

since m = 3 log ℓ and ℓ = Ω(n).

116

Tim Randolph Columbia University

Consequently, Algorithm 5.1 has expected runtime

TIME(n, ℓ) = O(2n/2 · ℓ−1/2 + ℓ) +O(2n/2 · ℓ−1/2 · log ℓ) Lines 1 and 2
+ 1 · (O(1) +O(ℓ/ log ℓ) +O(1)) Lines 4-7; solution
+ ℓ ·O(2n/2 · ℓ−3/2 · log ℓ) · (O(1) + on(1) +O(1)) Lines 4-7; collisions

= O(2n/2 · ℓ−1/2 · log ℓ).

5.3.1 Adapting Algorithm 5.1 to Word RAM

Adapting Algorithm 5.1 to the word RAM model requires replacing the constant-time AC0

circuit RAM operation used to detect hash collisions in Line 6. We can accomplish this using
a memoization strategy, which we will re-use with slight modifications for our subsequent
algorithms (Algorithm 5.2 and Algorithm 5.5).

Corollary 8. Algorithm 5.1 is a zero-error randomized algorithm for the Subset Sum problem
with expected runtime

O(2n/2 · ℓ−1/2 · log ℓ) = O(2n/2 · n−1/2 · log n)

in the word RAM model.

Proof. The main change required to achieve expected runtime O(2n/2 · n−1/2 · log n) in the
word RAM model is to run Algorithm 5.1 as if the word length were ℓ′ := 0.1n. Following a
similar conversion from [BDP05]:
Run Algorithm 5.1 as if the word length were ℓ′ = 0.1n, which results in the modified
parameters m′ = 3 log ℓ′, |D′| = log ℓ′, and |A′| = |B′| = (n − |D′|)/2. We make two more
modifications to the algorithm:

1. Line 2 packs q′ := min{ℓ′, ℓ}/m′ = Θ(n
log n

) many m′-bit hashes into each word of HA′ ,
HB′ , so every (ℓ′/m′) hashes are stored in ℓ′/(m′q′) = Θn(1) words rather than a single
word.

2. Before Line 6, create a table that memoizes the result of every comparison of two ℓ′-bit
strings in time (2ℓ′)2 · poly(ℓ′) = O(20.21n).3 This table can then be accessed via a
2ℓ′/(m′q′) = Θn(1)-word index in constant time. Line 6 replaces the constant-time
AC0 circuit RAM operation on two ℓ′-bit strings with a constant-time lookup into this
table.

3Note that we can reduce this runtime to 2εn for any ε > 0, as necessary. We will exploit the expanded
power of memoization in the exponential-time setting in our next algorithm.

117

Tim Randolph Columbia University

Compared with running Algorithm 5.1 itself for ℓ′ = 0.1n, the only difference of this variant
is that HA′ and HB′ are stored in Θn(1) times as many words, so correctness follows from
the same argument. The expected time taken for the collisions in each execution of Line 6
is (q′)2 ·O(2−m′) ·O(q′) = o(1). Thus, the overall runtime is as claimed:

O(2|A′| + 2|B′| + 2|D′| + 20.21n)︸ ︷︷ ︸
Lines 1 and 2

+ O(q′) +O

(
2|D′| 2|A′| + 2|B′|

q′

)
︸ ︷︷ ︸

Lines 4-7; potential solutions

= O

(
2n/2 · log n

n1/2

)
.

5.4 Ω(n0.01)-Factor Speedup via Orthogonal Vectors and
the Representation Method

Our second algorithm, Algorithm 5.2, achieves a speedup of Ω(ℓγ) ≥ Ω(nγ) over Algo-
rithm 1.1 for a constant γ > 0.01.

While this is a smaller speedup than that achieved by Algorithm 5.1, Algorithm 5.2 does
not use “bit tricks”. Instead, Algorithm 5.2 combines Algorithm 1.1 with the Representation
Method (Section 1.1.2) so as to reduce the Subset Sum problem to many small instances
of the Orthogonal Vectors (OV) problem: namely, instances with O(ℓ/ log ℓ) many binary
vectors of dimension Θ(log ℓ) = Θ(log n). Such instances of OV can be solved quickly
through a single AC0 word operation in the circuit RAM model or through constantly many
operations in the word RAM model after an initial memoization step. This results in our
speedup.

The high-level idea behind our algorithm is to partition the input X = A⊔B⊔C into two
large subsets A and B and one small subset C of size |C| = Θ(log ℓ), and to run Algorithm 1.1
on two lists formed from subsets of (A ∪ C) and (B ∪ C). Roughly speaking, the three lists
are created by modifying the Representation Method (Section 1.1.2) to ensure that the lists
are not too long. In order to eliminate the false positives due to overlapping subsets of C,
we exploit a fast implementation of a function that computes a batch of small instances of
Orthogonal Vectors.4 Before giving more details we provide some helpful notation:

4To see the relevance of the Orthogonal Vectors problem in this context, note that a solution to an
instance of OV on k-dimensional Boolean vectors corresponds to two disjoint subsets of the set [k].

118

Tim Randolph Columbia University

5.4.1 Definitions and Notation
For the sake of brevity in the sections that follow, we introduce some new notation. Write

Q(C) :=
{
T ⊆ C

∣∣∣∣∣ |T | ≤ |C|4

}
,

the collection of sets satisfying

§1/4(C) = {Σ(Q) | Q ∈ Q(C)}.

Here, we use the symbol Q to indicate the fact that the elements of Q(C) contain one quarter
of the elements of C. Accordingly, we refer to the elements of Q(C) as “quartersets” below.

For technical reasons, we will sometimes need to add a small “margin of error” to Q(C).
Given a small constant ε > 0, we write

Q+ε(C) :=
{
T ⊆ C

∣∣∣∣∣ |T | ≤ (1 + ε) |C|4

}
.

Formally, the Orthogonal Vectors problem is as follows:

Problem 9: Orthogonal Vectors (OV)

In: Two sets V = {v⃗1, . . . , v⃗n}, W = {w⃗1, . . . , w⃗n} of vectors in {0, 1}d.
Out: A pair (vi, wj) ∈ V ×W such that vi · wj = 0, or ‘No’ if no solution exists.

The following 2ℓ-bit boolean function is equivalent to Orthogonal Vectors on two sets
containing ℓ/|C| boolean vectors of |C| bits each. Define

OV : ({0, 1}|C|)ℓ/|C| × ({0, 1}|C|)ℓ/|C| → {0, 1}

as

OV
(

(x1, . . . , xℓ/|C|), (y1, . . . , yℓ/|C|)
)

:=
1 if ∃(i, j) : xi · yj = 0,

0 otherwise.
(5.1)

Because OV is an AC0 operation on two ℓ-bit words, it takes constant time in the circuit RAM
model.

5.4.2 Proof of Theorem 11
We begin with an overview of Algorithm 5.2. For the partial solutions used in the Represen-
tation Method, we use the list Q+ε2(C) of all “near-quartersets”, where ε2 is a small constant
defined below (refer to (5.2) and (5.3)). If a certain Subset Sum solution S ⊆ X satisfies

119

Tim Randolph Columbia University

|S ∩ C| ≤ (1 + ε2) |C|
2 , the set S ∩ C can be written as the union of many different pairs of

disjoint quartersets Q1, Q2 ∈ Q+ε2(C).
We then perform the filtering step of the Representation Method: given a random prime

p we construct two lists of “sum-subset pairs” by selecting sublists of

§⃗(A)×Q+ε2(C) and §⃗(B)×Q+ε2(C)

corresponding to two residue classes that add to t (mod p). This reduces the size of the
search space while ensuring that we retain some pair of near-quartersets Q1, Q2 ∈ Q+ε2(C)
satisfying Q1 ∪Q2 = S ∩ C and Q1 ∩Q2 = ∅.

Finally, we use a modified Meet-in-the-Middle procedure to search for a solution, i.e.,
two sum-subset pairs

(a, Q1) ∈ (⃗§(A)×Q+ε2(C)),
(b, Q2) ∈ (⃗§(B)×Q+ε2(C))

satisfying

a+ Σ(Q1) + b+ Σ(Q2) = Σ(S ∩ A) + Σ(S ∩B) + Σ(S ∩ C)
= Σ(S) = t.

We verify that Q1 ∩Q2 = ∅ via the boolean function OV.

We are now ready to prove correctness and runtime for Algorithm 5.2.

Theorem 11. Algorithm 5.2 solves the Vanilla Subset Sum problem with constant success
probability in time O(2n/2 · ℓ−γ) ≤ O(2n/2 · n−γ) for some constant γ > 0.01 in the circuit
RAM model.

Proof of Correctness for Algorithm 5.2. We define the constants ε1 ≈ 0.1579 and ε2 ≈
0.2427 to be the solutions to the following equations (which will be useful later):

1−H
(

1−ε1
2

)
(1− ε1)/2

= 1−H
(1− ε2

2

)
, (5.2)

1 + ε1 − 3H(1−ε1
2) = −2H(1+ε2

4). (5.3)

ε1 will serve to mark the cut-off point where we solve the instance by alternative methods if
|S ∩C| is far from |C|/2. ε2 defines our margin of error for the set of near-quartersets Q+ε2 .

We also define the constants

β := 1
H((1 + ε2)/4) ≈ 1.1186 and (5.4)

120

Tim Randolph Columbia University

Procedure RepresentationOV(X, t)

Input: An integer multiset X = {x1, x2, . . . , xn} and an integer target t.
Setup: Constants ε1 ≈ 0.1579 and ε2 ≈ 0.2427 as defined in (5.2) and (5.3).
Setup: Constants β ≈ 1.1186 and λ ≈ 0.0202 as defined in (5.4) and (5.5).
Setup: Parameters s and k as defined in (5.9) and (5.10).

0. Fix any partition of X = A ⊔B ⊔ C such that |C| = β log(ℓ
β log ℓ

) and
|A| = |B| = n−|C|

2 .

1. Use Lemma 20 to solve (X, t) if there exists a solution S ⊆ X with
|S ∩ C| /∈ (1± ε1) |C|

2 .

2. Use Lemma 6 to solve (X, t) if |§(C)| ≤ 2|C| · ℓ−λ.

3. Enumerate the sorted lists §(A) and §(B) using Algorithm 2.1.
Enumerate the set collection Q+ε2(C) = {Q ⊆ C | |Q| ≤ (1 + ε2) |C|

4 }.

4. Sample p ∼ [ℓ1+β/2 : 2ℓ1+β/2]. Repeat s times or until k many sum-subset pairs
have been created in Line 5, whichever comes first:

5. Sample r ∼ [p] and create the following sorted lists using Algorithm 5.3:
RA, r = {(a′ := a+ Σ(Q1), Q1) | a ∈ §⃗(A), Q1 ∈ Q+ε2(C), a′ = r (mod p)}

RB, r = {(b′ := b+ Σ(Q2), Q2) | b ∈ §⃗(B), Q2 ∈ Q+ε2(C), b′ = (t− r) (mod p)}

6. Use Lemma 21 to search the sorted lists RA, r and RB, r for a solution
(a′, Q1), (b′, Q2) such that a′ + b′ = t and Q1 ∩Q2 = ∅.
Halt and return if a solution is found.

7. Return ‘No’.

Figure 5.2: The RepresentationOV algorithm.

121

Tim Randolph Columbia University

λ := (1− 10−5) · 1− ε1

2 · β ·
(

1−H
(1− ε2

2

))
≈ 0.0202. (5.5)

β determines the size of the set C, and λ will be used to balance the runtime of the algorithm
steps. Ultimately, we will save a factor of nγ = nλ/2 over Meet-in-the-Middle.

Lines 1 and 2 preprocess the instance (X, t), solving it deterministically via Lemma 6 or
Lemma 20 unless both of the following conditions hold:
Condition 1. (X, t) is either a “Yes” instance such that

|S ∩ C| ∈
[
(1− ε1)

|C|
2 : |C|2

]

for each solution S ⊆ X, or has no solutions.
Condition 2. |§(C)| > 2|C| · ℓ−λ. Note that this implies

|§(T)| > 2|T | · ℓ−λ for each T ⊆ C.

Lines 3-7 accept only if in Line 6 we find a solution satisfying

a′ + b′ = (a+ Σ(Q1)) + (b+ Σ(Q2)) = t

for a ∈ §⃗(A), b ∈ §⃗(B) and Q1, Q2 ∈ Q+ε2(C) with Q1 ∩Q2 = ∅.
It remains to show that Lines 4-6 accept a “Yes” instance (X, t) with constant probability

if (X, t) satisfies Conditions 1 and 2. Consider a solution S ⊆ X and let W denote the set
of all distinct sums of “ε2-balanced” subsets of S ∩ C:

W :=
{

Σ(Q)
∣∣∣∣∣ Q ⊆ (S ∩ C) and |Q| ∈ (1± ε2)

|S ∩ C|
2

}
. (5.6)

We say that a residue i ∈ [p] is good if it satisfies

i− Σ(S ∩ A) ∈ (W mod p),

namely, if there exists a subset Q1 ⊆ (S ∩ C) of size |Q1| ∈ (1± ε2) |S∩C|
2 such that

Σ(S ∩ A) + Σ(Q1) = i (mod p).

On sampling a good residue r = i in Line 5, both Q1 and Q2 := (S ∩ C) \ Q1 are of size
at most (1 + ε2) |S∩C|

2 ≤ (1 + ε2) |C|
4 , so they are included in the collection Q+ε2(C) and,

respectively, in the lists RA, r and RB, r created in Line 5. If this event occurs the algorithm
is guaranteed to recover the solution S = (S∩A)∪ (S∩B)∪ (Q1∪Q2) by Lemma 21, proved
below.

122

Tim Randolph Columbia University

Hence it suffices to (i) lower bound the probability that at least one of the s samples
r ∼ [p] is good, and (ii) upper bound the probability that these samples generate a total of
k or more sum-subset pairs over all samples of r.

(i). To show (i), we begin by proving bounds on |W |:
Claim 12. We claim that

|W | ≤ 2|S∩C| ≤ ℓβ/2 and (5.7)
|W | = Ω(2|S∩C| · ℓ−λ) = Ω̃(ℓ(1−ε1)·β/2−λ). (5.8)

Proof: The upper bound follows from applying the definition of W (5.6), Condition 1, and
the fact that |C| := β log(ℓ

β log ℓ
) in Algorithm 5.2:

|W | ≤ 2|S∩C|

≤ 2|C|/2

≤ 2
β
2 log(ℓ

β log ℓ
)

≤ ℓβ/2 · oℓ(1).

The lower bound follows from a combination of two observations. First, the set (S ∩ C)
has at least 2|S∩C| · ℓ−λ many distinct subset sums, by Condition 2. Second, to bound
§(S ∩C) \W , we observe that the number of subsets Q ⊆ (S ∩C) of size |Q| /∈ (1± ε2) |S∩C|

2
is at most

2 · 2H(1−ε2
2)·|S∩C| = o(2|S∩C| · ℓ−λ),

by Stirling’s approximation (2.3) and the technical condition

|S ∩ C|
log ℓ ·

(
1−H

(1− ε2

2

))
≥ (1− on(1)) · 1− ε1

2 · β ·
(

1−H
(1− ε2

2

))
> λ,

which is true for our choice of constants; see (5.2), (5.3), (5.4), and (5.5). Finally, the fact
that 2|S∩C| = Ω̃(ℓ1−ε1 · β/2) follows from Condition 1 and the fact that |C| := β log(ℓ

β log ℓ
) in

Algorithm 5.2. ■
By (5.7) and the fact that the elements of W are bounded by t ≤ 2ℓ without loss of

generality, we have that

|W | log2(diam(W)) ≤ ℓβ/2 log2

(
2ℓ
)

≤ ℓ1+β/2.

Because p ∼ [ℓ1+β/2 : 2ℓ1+β/2], we can apply the Second Prime Distribution Lemma (Lemma 10)
to conclude that there are |W mod p| = Ω(|W |) = Ω̃(ℓ(1−ε1)·β/2−λ) many good residues with
constant probability over the choice of p.

123

Tim Randolph Columbia University

Conditioned on this event, taking

s := s(ℓ) = Θ̃(ℓ1+λ+ε1·β/2) ≥ Ω̃
(

p
|(W mod p)|

)
(5.9)

many samples r ∼ [p] yields at least one good residue with constant probability.
(ii). All the sorted lists of sum-subset pairs taken together (that is, {RA, i}i∈[p], {RB, i}i∈[p])
have a total of

(|⃗§(A)|+ |⃗§(B)|) · |Q+ε2(C)| ≤ 2 · 2(n−|C|)/2 · 2|C|/β = O(2n/2 · ℓ1−β/2)

sum-subset pairs, by construction (Line 3), the choices of |A|, |B|, |C|, and Stirling’s approx-
imation (2.3). For any prime modulus p = Θ(ℓ1+β/2) in the range [ℓ1+β/2 : 2ℓ1+β/2], taking s
samples r ∼ [p] generates a total of

O(2n/2 · ℓ1−β/2) · s
p

= Õ(2n/2 · ℓ−((1−ε1/2)·β−(1+λ)))

sum-subset pairs in expectation. By setting a large enough cutoff

k := Θ̃
(
2n/2 · ℓ−((1−ε1/2)·β−(1+λ))

)
, (5.10)

we reduce the probability that k or more sum-subset pairs are generated to an arbitrarily
small constant.

Subtracting the chance that we generate k or more sum-subset pairs from the probability
that we achieve a good residue implies that our algorithm succeeds with constant probability.

Proof of Runtime for Algorithm 5.2.
• Line 1 takes time Õ(2n/2 · ℓ−(1−H((1−ε1)/2))·β/2) by Lemma 20.

• Line 2 takes time Õ(2n/2 · ℓ−λ/2), by Lemma 6.

• Line 3 takes time

O(2|A| + 2|B| + 2|C|) ·O(log ℓ) = Õ(2n/2 · ℓ−β/2),

by Lemma 2, the choices of |A|, |B|, and |C|, and the fact that that the modulo
operation takes time O(log ℓ) time in the circuit RAM model.

• Lines 4-6 take time
Õ(k) = Õ(2n/2 · ℓ−((1−ε1/2)·β−(1+λ))),

because a single iteration (Lemma 21) takes time Õ(|RA, r|+ |RB, r|), and, by
construction, we create a total of at most∑

r

(|RA, r|+ |RB, r|) ≤ k

many sum-subset pairs.

124

Tim Randolph Columbia University

The runtime of Line 3 is dominated by that of Line 1, so the bottleneck occurs in Line 1,
Line 2, or Lines 4-6. For the choices of constants given in the algorithm, we achieve a speedup
of Ω(ℓγ) for any constant γ ∈ (0, γ∗), where

γ∗ := min
{
λ

2 ,
(

1−H
(1− ε1

2

))
· β2 ,

(
1− ε1

2

)
· β − (1 + λ)

}

= λ

2 ≈ 0.0101.

5.4.3 Auxiliary Lemmas
A useful preprocessing lemma shows that if the algorithm chooses a small subset with respect
to which some solution S is “unbalanced”, we can exploit this fact to solve Vanilla Subset
Sum quickly. This is a straightforward recombination of ideas from Lemmas 5 and 6 tailored
to our specific needs.

Lemma 20 (Solving Subset Sum with an Unbalanced Subset, c.f. Lemma 6). Fix a Subset
Sum instance (X, t), and let Y ⊆ X be a set of cardinality

|Y | = β log
(

ℓ

β log ℓ)

)
,

for β as in (5.4), known to the algorithm, such that some solution S ⊆ X satisfies

|S ∩ Y | /∈ (1± ε) |Y |2

for a constant ε > 0. Then S can be found deterministically in time Õ(2n/2 · ℓ−δ/2), where
the constant

δ :=
(

1−H
(1− ε

2

))
· β.

Proof. Fix a Subset Sum Instance (X, t), and let Y and S be a subset of X and a solution,
respectively, as in the lemma statement.

Assume without loss of generality that the solution S satisfies |S∩Y | ≤ |Y |
2 (Section 2.3.3).

This implies
|S ∩ Y | ≤ (1− ε) |Y |2 .

Then the sorted list §⃗(Y ′) of

Y ′ :=
{

Σ(T) | T ⊆ Y and |T | ≤ (1− ε) |Y |2

}

125

Tim Randolph Columbia University

can be enumerated in time O(2|Y |) = O(ℓβ) = poly(n) by Algorithm 2.1 (restricting the
algorithm to subsets of Y of size at most (1− ε) |Y |

2).
Fix an arbitrary set A of cardinality

n+ (δ/β)|Y |
2 =

n+ (1−H(1−ε
2))|Y |

2

satisfying
Y ⊆ A ⊆ X.

In the regime ℓ = poly(n), we can use §⃗(Y ′) and Lemma 3 to create the sorted list §⃗(A′) of

A′ :=
{

Σ(T)
∣∣∣∣∣ T ⊆ A and |T ∩ Y | < (1− ε) |Y |2

}

in time

Õ(|⃗§(A′)|) ≤ Õ(2|A\Y | · |⃗§(Y ′)|)
≤ Õ(2|A\Y | · 2H(1−ε

2)·|Y |)
≤ Õ(2n/2 · ℓ−δ/2),

using Stirling’s approximation (2.3) and plugging in |Y | and |A|. We can then use Lemma 2
to enumerate the sorted list LX\A in time O(2|X\A|) = Õ(2n/2 · ℓ−δ/2).

Provided |S ∩Y | < (1− ε) |Y |
2 , running Algorithm 1.1 on §⃗(A′) and §⃗(X \A) solves (X, t)

in time
O(|⃗§(A)|+ |⃗§(|X \ A|) = Õ(2n/2 · ℓ−δ/2).

The overall runtime is Õ(2n/2 · ℓ−δ/2).

Lemma 21 (Implementation of Algorithm 5.2 Lines 5 and 6).

1. Line 5 of Algorithm 5.2 creates the sorted lists RA, r and RB, r in time Õ(|RA, r| +
|RB, r|).

2. Line 6 finds a solution pair (a′, Q1) ∈ RA, r, (b′, Q2) ∈ RB, r, if one exists, in time
O(|RA, r|+ |RB, r|).

Proof. Line 5 creates RA, r and RB, r using the subroutine ResidueCoupleList (Algo-
rithm 5.3), which we proceed to analyse. First, we claim that Algorithm 5.3 takes time
Õ(|RA|) for ℓ = poly(n):

126

Tim Randolph Columbia University

Subroutine ResidueCoupleList({LA, i}i∈[p], Q+ε(C), r)

Input: A collection of p = poly(ℓ) sorted sublists §⃗(A) = ⋃
i∈[p] LA, i, for some subset

A ⊆ X, indexed by residue class modulo p; also a collection Q+ε(C) of near-quartersets.
Output: A sorted sum-subset list RA, r with elements in the sum-subset pair format
(a′, Qa′).

5(a) For each Q ∈ Q+ε(C), create the sum-subset sublist RQ := fQ(LA, j(Q)) by
applying fQ, the element-to-couple operation a 7→ (a′ := a+ Σ(Q), Q), to the
particular input sublist of index j(Q) := (r − Σ(Q)) (mod p).

5(b) Let RA, r be the list obtained by merging {RQ}Q∈Q+ε(C), sorted by sums
a′ = a+ Σ(Q).
For each distinct sum a′, compress all couples (a′, Q1), (a′, Q2), . . . with the
same first element a′ into a single data object (a′, Qa′ := {Q1, Q2, . . . }).

Figure 5.3: The Residue-Couple-List subroutine.

• Line 5(a) takes time

O

 ∑
Q ∈ Q+ε2 (C)

|RQ|

 = O(|RA, r|),

since all shifts Σ(Q) for Q ∈ Q+ε2(C) can be precomputed and memoized when the
collection Q+ε2(C) is created in Line 3.

• Line 5(b) enumerates RA, r using the collection of sorted sublists {RQ}Q ∈ Q+ε2 (C),
which contains

|Q+ε2(C)| ≤ 2|C|/β = ℓ/(β log ℓ) = poly(n)
sorted sublists. If we do so using a merge sort approach as in Section 2.3.2, this takes
time O(|RA, r| · log n).

After Line 5 creates the sorted lists RA, r and RB, r, Line 6 uses Meet-in-the-Middle
(Algorithm 1.1) on the two lists, using the sum a′ as the index of each sum-subset sublist
(a′, Qa′) ∈RA, r. This takes time O(|RA, r|+ |RB, r|).

The Meet-in-the-Middle procedure ensures that we discover every pair (a′, Qa′), (b′, Qb′) ∈
RA, r ×RB, r such that a′ + b′ = t. Such a pair yields a solution if and only if it contains
two disjoint near-quartersets Q1 ∈ Qa′ , Q2 ∈ Qb′ with Q1 ∩ Q2 = ∅, which we can check
in constant time by one call of the boolean function OV. (Because each near-quarterset
Q ∈ Q+ε2(C) is stored in |C| < β log ℓ bits, each collection Qa′ , Qb′ ⊆ Q+ε2(C) can be

127

Tim Randolph Columbia University

stored a single word |C| · |Q+ε2(C)| ≤ ℓ. Thus one call of OV suffices to check a given pair
(a′, Qa′), (b′, Qb′).) Overall, Line 6 takes time O(|RA, r|+ |RB, r|).

5.4.4 Adapting Algorithm 5.2 to Word RAM
Analogously to Section 5.3.1, adapting Algorithm 5.2 to word RAM requires adapting the
operation OV, which we can accomplish via memoization.

Theorem 12. Algorithm 5.2 solves the Vanilla Subset Sum problem with constant success
probability in time O(2n/2 ·ℓ−γ) ≤ O(2n/2 ·n−γ) for some constant γ > 0.01 in the word RAM
model.

Proof. Similar to the strategy used in Section 5.3, our word RAM variant of Algorithm 5.2
runs as if the word length were ℓ′ := 0.1n (using sets A′, B′, C ′, etc.) We require three
nontrivial modifications to the algorithm:

1. In lines 3 and 5(b), the collection Q ⊆ Q+ε2(C ′) may no longer fit into a single word
due to the new restriction in word size. Instead, we can store the collection as a bit
string it in at most ⌈

|Q+ε2(C ′)| · |C
′|
ℓ

⌉
≤ ⌈ℓ

′

ℓ
⌉ = Θ(1)

separate words.

2. In Line 3, after creating the collection Q+ε2(C ′), create a lookup table OV′ that mem-
oizes the input-output result of the boolean function OV on each subcollection pair
Qa′ , Qb′ ⊆ Q+ε2(C ′) in time

(2|Q+ε2 (C′)|)2 · poly(|Q+ε2(C ′)|) ≤ (2ℓ′)2 · poly(ℓ′) = O(20.21n).

This table can then be accessed using a 2⌈ℓ′/ℓ⌉ = Θ(1)-word index in constant time.

3. Line 6 replaces the boolean function OV (namely a constant-time AC0 circuit RAM
operation) with constant-time lookup into the table OV′.

5.5 Subset Sum in Time O(2n/2 · n−0.5023)
The algorithm in this section is a delicate combination of Algorithm 5.1 and Algorithm 5.2
that requires significant constant-balancing and other bookkeeping. The reason for per-
sisting in the exercise is not the small polynomial time savings over Algorithm 5.1, but
the conceptual significance of the fact that Algorithm 5.1 and Algorithm 5.2 are comple-
mentary: Theorem 13 demonstrates that problem-specific features of Subset Sum can be

128

Tim Randolph Columbia University

exploited to obtain an additional time savings beyond what can be achieved by applying
generic bit-packing tricks to Meet-in-the-Middle. Because the bookkeeping is intricate, the
first-time reader is encouraged to first trace the application of the ideas from Section 5.3 and
Section 5.4 and return later to the details which arise when combining them.

To gain a high-level understanding of the issues that occur in the attempt to combine
Algorithm 5.1 and Algorithm 5.2, consider the way in which each algorithm saves time over
Meet-in-the-Middle:

• Algorithm 5.1 saves time by removing a subset D ⊆ X from the input, then running
a Meet-in-the-Middle variant on the resulting subinstance multiple times.

• Algorithm 5.2 runs a Meet-in-the-Middle variant on multiple subinstances indexed by
residue classes modulo a random prime p.

This presents a problem: to get the time savings from bit packing, we would like to reuse
two sorted lists of sums multiple times, but to get the time savings from the Representation
Method, we would like to build separate subinstances with respect to each residue class
(mod p) that contains elements of §(D).

To solve this problem, we construct D in a way that ensures the elements of §(D) fall
into few residue classes. Specifically, we fix a prime modulus p and construct D based on
the distribution of X (mod p):

• Case I: the elements of X fall into few residue classes (mod p). In this case, it is
possible to choose a small set D such that the elements of D (and §(D)) fall into very
few residue classes (mod p). As a result, we need to construct only |§(D) mod p| =
polylog(n) distinct subproblems.

• Case II: the elements of X fall into many residue classes (mod p). In this case,
a carefully selected D satisfies the weaker bound |§(D) mod p| = Õ(nδ) for a small
constant δ > 0, which does increase the runtime by a polynomial factor. However, the
fact that the elements of X fall into many residue classes (mod p) allows us to select
a larger set C such that the subset sums in §(S ∩ C) distribute well (mod p) for any
solution S, which in turn offsets the increase in runtime.

Similar to the AC0 operation OV in Algorithm 5.2, the core of Algorithm 5.5 is the AC0

operation PackedOV. This new operation also takes two ℓ-bit words as input, but may solve
multiple very small Orthogonal Vectors instances. We define

PackedOV : {0, 1}ℓ × {0, 1}ℓ → {0, 1}

as

PackedOV
((

hm(s1), (x⃗s1,1, . . .)
)
,
(
hm(s2), (x⃗s2,2, . . .)

)
, . . . ;

(
hm(r1), (y⃗r1,1, . . .)

)
, . . .

)

129

Tim Randolph Columbia University

:=
1 if ∃(i, j, k) : x⃗si,j · y⃗ri,k = 0

0 otherwise.
(5.11)

The difference between OV and PackedOV is that the bit vectors in each input word may come
from any one of multiple lists, each indexed by the m-bit hash hm(s) of a corresponding
subset sum s. The reader may think of PackedOV as asking: “for any of these small OV
instances, indexed by the sums (s1, r1), (s2, r2), etc., such that si + ri = t for all pairs, does
there exist an orthogonal pair corresponding to a pair of disjoint quartersets?”

We also define a density constant

ρ := log n
log ℓ , (5.12)

with respect to the cardinality of the input set n and the bit length ℓ of a word in memory.
Note that ρ satisfies

0 < ρ ≤ 1 + Θ
(

1
log n

)
under the assumptions that ℓ = poly(n) and ℓ = Ω(n).5

In the “low density regime”, in which ρ satisfies

0 < ρ ≤ 1
2−H(1/4) ≈ 0.8412,

Algorithm 5.5 can achieve the claimed speedup by naively simulating BitPacking (Algo-
rithm 5.1), which achieves a time savings of

Ω̃(ℓ1/2) = Ω̃(n1/(2ρ)) ≥ Ω(n0.5943) ≥ Ω(n0.5023).

Thus it suffices to consider the “medium-density range”, in which

1
2−H(1/4) < ρ ≤ 1 + Θ

(
1

log n

)
. (5.13)

As in Algorithm 5.2, we will employ the constants ε1 and ε2, which take the same values
and serve the same functions as previously. β and λ also play the same roles as their
counterparts in the previous proof, but are now defined with respect to the density parameter
ρ in order to optimize runtime. The parameters s and k still denote our bounds on the number
of residue class samples and the total number of sum-subset pairs, respectively, although in

5Another density parameter, n/ log t, is used in the literature (e.g., [AKKN16]). This is equivalent to
n/ℓ using our notation, as we assume ℓ = Ω(log t). In comparison, our density constant ρ = log n

log ℓ is more
“fine-grained”.

130

Tim Randolph Columbia University

contrast to β and λ, the fixed constants, they take different values in Case I and Case II
to ensure the correctness of the algorithm in both cases. Finally, because we construct the
set D differently in Case I and Case II, we will use different threshold values to deal with
|S∩C| and the set of near-quartersums in each case; this results in the use of a new constant
ε′

1 := ε′
1(ρ) in Case I and endogenous values e1 and e2 set differently based on whether the

algorithm enters Case I or Case II.

Procedure PackedRepresentationOV(X, t)

Input: A set X and an integer target t.
Setup: Constants ε1 ≈ 0.1579 and ε2 ≈ 0.2427 as defined in (5.2) and (5.3).
Setup: Constants λ, β, and ε′

1, defined in (5.23) and (5.24) with respect to ρ.
Setup: Parameters s and k defined with respect to n and ℓ in the proof of correctness.

0. Sample a random prime p ∼ [ℓ1+β/2 : 2ℓ1+β/2]. Construct the random sets C and
D according to one of two procedures:

(a) Case I: |X mod p| > ℓρ/ log ℓ.
Set e1 := ε′

1 and e2 := 0.
Use Lemma 22 to sample C ⊆ X and Lemma 23 to sample D ⊆ (X \C).

(b) Case II: |X mod p| ≤ ℓρ/ log ℓ.
Set e1 := ε1 and e2 := ε2.
Set D to be an arbitrary subset of X with cardinality log ℓ such that every
element falls into the same residue class: |D mod p| = 1. Sample

C ∼
{
T ⊆ (X \D),

∣∣∣∣∣ |T | = β log
(

ℓ

β log ℓ

)}
.

1. Let A ⊔B be an arbitrary partition of X \ (C ∪D) satisfying

|A| = |B| = n− |C| − |D|
2 .

2. Use Lemma 25 to solve (X, t) if there exists a solution S with

|S ∩C| /∈ (1± e1)
|C|
2 .

3. Use Lemma 24 to solve (X, t) if

|§(C)| ≤ 2|C| · ℓ−λ.

131

Tim Randolph Columbia University

4. Enumerate §(D) and the collection of near-quartersets

Q+e2(C) :=
{
Q ⊆ C

∣∣∣∣∣ |Q| ≤ (1 + e2)
|C|
4

}
.

Enumerate the sorted lists §⃗(A) and §⃗(B) using Algorithm 2.1.

5. For each adjusted target t′ ∈ (t− §(D) (mod p)):

6. Repeat Line 7 s times or until k many sum-subset pairs have been created:

7. Sample a residue r ∼ [p], then create the sorted lists

RA, t′, r := {(a+ Σ(Q1), Q1) | (a,Q1) ∈ §⃗(A)×Q+e2(C), a+ Σ(Q1) = r mod p}
RB, t′, r := {(b+ Σ(Q2), Q2) |

(b,Q2) ∈ §⃗(B)×Q+e2(C), b+ Σ(Q2) = (t′ − r) mod p}

8. Define
RA, t′ :=

⋃
r

RA, t′, r,

with each pair (a+ Σ(Q), Q) sorted by sum a+ Σ(Q); do likewise for RB, t′ .
Use Lemma 26 to create the hashed and packed lists HA, t′ and HB, t′

from RA, t′ and RB, t′ , respectively.

9. For each t′′ ∈ (t− §(D)):

10. Use Lemma 27 to search the sorted lists HA, (t′′ mod p), HB, (t′′ mod p) for a
solution pair (a′, Q1), (b′, Q2) such that a′ + b′ = t′′ and Q1 ∩Q2 = ∅.
Halt and return if a solution is found.

11. Return ‘No’.

Theorem 13. Algorithm 5.5 solves the Vanilla Subset Sum problem with constant success
probability in time O(2n/2 ·n−(1/2+γ)) for some constant γ > 0.0023 in the circuit RAM model.

Proof of Correctness. Lines 2 and 3 solve (X, t) in specific easy cases. Line 2 solves the
instance if there exists a solution S that is significantly unbalanced with respect to the
randomly selected set C, and Line 3 solves the instance if C has few subset sums.

Conditioning on the event that neither Line 2 nor 3 solves the instance, our instance
satisfies conditions analogous to those in the proof of Theorem 11:

132

Tim Randolph Columbia University

Condition 1’. (X, t) is either a “Yes” instance such that

|S ∩ C| ∈
[
(1− e1)

|C|
2 : |C|2

]
(5.14)

holds for every solution S ⊆ X, or has no solutions.
Condition 2’.

|§(C)| > 2|C| · ℓ−λ, which immediately implies (5.15)
|§(T)| > 2|T | · ℓ−λ for all T ⊆ C. (5.16)

In other words, the preprocessing in Lines 2 and 3 serves to ensure that C behaves like a
random set in two specific, helpful ways.

It remains to show that if a solution exists, Lines 4-10 recover it with constant probability.
Fix any outcome of the partition X = A ⊔B ⊔C ⊔D = A ⊔B ⊔ C ⊔D. With respect to
a fixed solution S ⊆ X, define the set

W ′ :=
{

Σ(Q)
∣∣∣∣∣ Q ⊆ (S ∩ C) and |Q| ∈ (1± e2)

|S ∩ C|
2

}
⊆ §(S ∩ C).

W ′, like the set W in the proof of Theorem 11, is almost the same as §(S ∩ C), with the
additional condition that we consider only the sums of subsets that are “e2-balanced”, where
e2 is the small constant fixed in Step 0 of Algorithm 5.5.

We say that a residue i ∈ [p] is good if it satisfies

i− Σ(S ∩ A) ∈ (W ′ mod p),

in which case there exists a subset Q1 ⊆ (S ∩ C) of size |Q1| ∈ (1 ± e2) |S∩C|
2 such that

Σ(S ∩ A) + Σ(Q1) = i (mod p).
Consider the iteration

t∗ := t− Σ(S ∩D) (mod p)
of the loop in Line 5, which is the iteration in which we may recover the solution S. If we
condition on sampling a good residue r in Line 7, both sets Q1 and Q2 := (S ∩C) \Q1 have
size at most

(1 + e2)
|S ∩ C|

2 ≤ (1 + e2)
|C|
4 ,

so they are included in Q+e2(C) and, respectively, in the lists RA, t∗, r and RB, t∗, r created
in Line 7. As a consequence, in iteration t∗ of Line 9, we recover a solution pair (a′, Q1),
(b′, Q2) with constant probability by Lemma 27.

To complete the lemma it remains to reason about the iteration of Line 5 that selects t∗,
and prove

133

Tim Randolph Columbia University

• (i) a lower bound on the probability that at least one of the s many samples r ∼ [p]
in Line 7 is good and

• (ii) an upper bound on the probability that these samples generate a total of k or more
sum-subset pairs.

We divide into two cases corresponding to Case I and Case II of Step 0 and prove (i) and
(ii) for each. (Recall that whether the algorithm enters Case I or Case II is determined
by whether |X (mod p)| ≥ ℓρ/ log ℓ and subsequently determines the manner in which we
sample the small random sets C and D.)

In Case I:
(i). By Lemma 22, proved below, we have |§(C) mod p| = 2|C|, which implies that

|§(S ∩ C) mod p| = 2|S∩C| and thus

|W ′ mod p| = Ω̃
((
|S ∩ C|
|S ∩ C|/2

))
= Ω̃(2|S∩C|)
≥ Ω̃(2(1−ε′

1)·|C|/2)
= Ω̃(ℓ(1−ε′

1)·ρ/4),

in which the first line follows from Stirling’s approximation (2.3) and the remaining lines
follow from Condition 1’ (5.14) and the choice of |C| = 1

2 log(ℓρ/ log ℓ) in Lemma 22, e1 = ε′
1,

and e2 = 0 in Case I.
Thus there exists a choice of

s = sI := Θ̃(ℓ1+β/2−(1−ε′
1)·ρ/4) (5.17)

that ensures we obtain a good residue with constant probability.
(ii). All candidate lists {RA, t∗, i}i∈[p], {RB, t∗, i}i∈[p] contain a total of

(|⃗§(A)|+ |⃗§(B)|) · |Q+e2(C)| = Õ(2n/2 · ℓ−1/2 · ℓ(H(1/4)−1/2)·ρ/2−(1−ρ+β/2)/2)

many sum-subset pairs, by construction (Line 4), the choices of |A|, |B|, and |C|, e2 = 0,
and Stirling’s approximation (2.3). Thus, a taking s = sI many samples r ∼ [p] creates

(|⃗§(A)|+ |⃗§(B)|) · |Q+e2(C)| · s(ℓ)
p
≤ 1

3k

sum-subset pairs in expectation, and choosing

k = kI := Θ̃(2n/2 · ℓ−1/2 · ℓ−((1−H(1/4)−ε′
1/2)·ρ/2+(1−ρ+β/2)/2)), (5.18)

134

Tim Randolph Columbia University

allows us to reduce the probability that k or more sum-subset couples are generated to an
arbitrarily small constant by Markov’s inequality. Thus, in Case I, the algorithm succeeds
with constant probability.

In Case II:
Consider the collection C ′(X) of size-(β log(ℓ

β log ℓ
)) subsets C ′ ⊆ X that satisfy Conditions

1’ (5.14) and 2’ (5.15):

C ′(X) := {C ′ ⊆ X | (5.14) and (5.15) hold, and |C ′| = β log(ℓ
β log ℓ

)}

Consider also the restriction of this set to (X \D):

C ′(X \D) := {C ⊆ (X \D) | (5.14) and (5.15) hold, and |C| = β log(ℓ
β log ℓ

)}.

Conditioning on the event that we are in Case II and both and (5.14) and (5.15) hold, the
random subset C is distributed as C ∼ C ′(X \D).

Let
P2 ⊆ [ℓ1+β/2 : 2ℓ1+β/2] (5.19)

denote the set of prime values for p such that, with respect to our input instance X, the
algorithm enters Case II (the “Case II primes”). Similarly, let P1 denote the set values for
p such that the algorithm enters Case I (“Case I primes”). Without loss of generality, we
assume that

|P2| = Ω(|P1|), (5.20)
that is, that Case II occurs with constant probability over p ∼ [ℓ1+β/2 : 2ℓ1+β/2]. (Otherwise,
the algorithm enters Case I and succeeds with constant probability, so analysis of Case II is
not necessary.) Conditioning on the algorithm entering Case II, the random modulus p is
distributed as p ∼ P2.

(i). Each subset C ′ ∈ C ′(X) satisfies the technical condition

|S ∩ C ′|
log ℓ ·

(
1−H

(1− ε2

2

))
≥ (1− on(1)) · 1− ε1

2 · β ·
(

1−H
(1− ε2

2

))
> λ,

which can be verified for our chosen λ (5.23), β (5.24), ε1 (5.2), ε2 (5.3), and the choice of
|C ′| = β log(ℓ

β log ℓ
) using Condition 1’ (5.14) .

Following identical arguments to the proof of Claim 12, we can conclude that

|W ′| ≤ 2|S∩C′| ≤ ℓβ/2 and (5.21)
|W ′| = Ω(2|S∩C′| · ℓ−λ) = Ω̃(ℓ(1−ε1)·β/2−λ). (5.22)

135

Tim Randolph Columbia University

Thus we have
|W ′| log2(diam(W ′)) ≤ ℓ1+β/2,

which allows us to apply the Second Prime Distribution Lemma (Lemma 10) to conclude
that there are

|W ′ mod p| = Θ(|W ′|) = Ω̃(ℓ(1−ε1)·β/2−λ)
good residues with constant probability over p ∼ (P1 ∪ P2) = [ℓ1+β/2 : 2ℓ1+β/2] and C ′ ∼
C ′(X). Moreover, because a constant fraction of choices for p are Case II primes by (5.20),
we conclude that

Pr(p,C′) ∼ P2×C′(X)
[
|W ′ mod p| = Ω̃(ℓ(1−ε1)·β/2−λ)

]
= Ω(1).

So far, we have performed our analysis for a random subset C ′ sampled uniformly at
random from C ′(X), rather than the actual support C(X \ D). Fortunately, as D is very
small, the restriction of the sample to X \D removes a negligible fraction of subsets:

|C ′(X) \ C ′(X \D)|
|C ′(X)| ≤ 1−

(
n−|D|

|C′|

)
(

n
|C′|

)
∈ β log2(ℓ)

n
· (1± on(1))

= on(1).

Thus, a uniform random C ∼ C(X \ D) yields a large residue set (mod p) with constant
probability. Conditioned on this event, choosing a sufficiently large

s := sII = Ω
(

p

|W ′ mod p|

)
= Ω̃(ℓ1+ε1·β/2+λ)

yields at least one good residue with constant probability.
(ii). By substituting the Case II values of |A|, |B| and |C| = β log(ℓ

β log ℓ
) into the proof

of (ii) from Case I, we conclude that the probability of generating more than k sum-subset
pairs in total is an arbitrarily small constant for an appropriate choice of

k = kII := Θ̃(2n/2 · ℓ−1/2 · ℓ−((1−H(1+ε2
4)−ε1/2)·β−λ)).

We conclude that, in Case II, the algorithm succeeds with constant probability. Combin-
ing this fact with our proof for Case I concludes the proof of correctness for Theorem 13.

Proof of Runtime for Algorithm 5.5. Line 0 takes time poly(ℓ) = poly(n) regardless of whether
the algorithm enters Case I (Lemmas 22 and 23) or Case II. This is easily dominated by
runtime of the rest of our algorithm. To analyse the runtime of the remaining steps, we

136

Tim Randolph Columbia University

divide our analysis into two parts based on whether the algorithm enters Case I or Case II
in Step 0 of Algorithm 5.5.

Case I. Depending on the choice of parameters, the runtime bottleneck occurs in Lines 2-3
or Lines 5-10:

• Lines 2-3 take time
Õ(2n/2 · ℓ−1/2 · ℓ−(1−H(

1−ε′
1

2))·ρ/4)
by Lemma 25 and the choice of |C|.

• Line 4 takes time

O(2|A| + 2|B| + 2|C| + 2|D|) = Õ(2n/2 · ℓ−1/2 · ℓ−(2−ρ+β)/4)

by Lemma 2 and the choices of |A|, |B|, |C|, and |D|. This runtime is dominated by
that of Line 2 as (

1−H
(

1− ε′
1

2

))
ρ < 2− ρ+ β

for β and ε′
1 as defined in (5.24) as ρ ≤ 1 + o(1) by (5.12).

• Lines 5-10 take time

Õ(kI(n, ℓ) · ℓ1−ρ+β/2) = Õ(2n/2 · ℓ−1/2 · ℓ−((4−2H(1/4)−ε′
1)·ρ−2−β)/4) :

– Line 5 iterates Lines 6-8 a total of |§(D) mod p| = Õ(ℓ1−ρ+β/2) times, by
Lemma 23. Each iteration takes time

Õ

(∑
r

(|RA, t′, r|+ |RB, t′, r|)
)

= Õ(kI)

by Lemma 26.
– Line 9 iterates Line 10 a total of 2|D| = ℓ2−ρ+β/2 times. Each iteration takes time
Õ(kI · ℓ−1) by Lemma 27. (Note that we can convert the expected runtime
guarantee of Lemma 27 into a runtime upper bound with arbitrarily small
failure probability using a runtime cutoff, by Markov’s inequality.)

Taking the maximum runtime over lines 2-3 and lines 5-10, Algorithm 5.5 achieves a speedup
of Ω̃(ℓ1/2+γ′

∗) over Meet-in-the-Middle in Case I, where

γ′
∗ := min

{
1−H((1− ε′

1)/2)
4 · ρ, 4− 2H(1/4)− ε′

1
4 · ρ− 1

2 −
β

4

}
.

Case II. Once again, depending on the choice of parameters, the bottleneck occurs in
Lines 2-3 or Lines 5-10:

137

Tim Randolph Columbia University

• Lines 2-3 take time

Õ(2n/2 · ℓ−1/2 · ℓ−λ/2) + Õ(2n/2 · ℓ−1/2 · ℓ−(1−H(1−ε1
2))·β/2)

by Lemmas 24 and 25.

• Line 4 takes time O(2|A| + 2|B| + 2|C| + 2|D|) = Õ(2n/2 · ℓ−1/2 · ℓ−β/2), by Lemma 2 and
the choices of |A|, |B|, |C|, and |D|. This runtime is dominated by that of Line 2.

• Lines 5-10 take time

Õ(kII) = Θ̃(2n/2 · ℓ−1/2 · ℓ−((1−H(1+ε2
4)−ε1/2)·β−λ)).

– Lines 5 iterates Lines 6-8 a total of

|§(D) mod p| ≤ |D|+ 1 = O(log ℓ) = O(log n)

times, because all integers in D are congruent modulo p by construction
(Line 0). Each iteration takes time

Õ

(∑
r

(|RA, t′, r|+ |RB, t′, r|)
)

= Õ(kII)

by Lemma 26.
– Line 9 iterates Line 10 a total of 2|D| = ℓ times, by the choice of |D|. Each

iteration takes time Õ(kII · ℓ−1), by Lemma 27. (Note that we can convert the
expected runtime guarantee of Lemma 27 into a runtime upper bound with
arbitrarily small failure probability using a runtime cutoff, by Markov’s
inequality.)

Taking the maximum runtime over Lines 2-3 and Lines 5-10, we achieve a speedup of
Ω̃(ℓ1/2+γ′′

∗) over Meet-in-the-Middle in Case II, where

γ′′
∗ := min

{
λ

2 ,
1−H((1− ε1)/2)

2 · β, (1−H(1 + ε2

4)− ε1

2) · β − λ
}

= λ

2 = (1− 10−5) · 1− ε1

4 · (1−H(1− ε2

2)) · β ≥ 9.0324× 10−3 · β.

Set

λ = λ(ρ) := (1− 10−5) · 1− ε1

2 ·
(

1−H
(1− ε2

2

))
· β ≈ 1.8065× 10−2 · β. (5.23)

so that λ
2 minimizes the expression above for our chosen values of ε1 and ε2, as in the proof

of runtime for Algorithm 5.2.

138

Tim Randolph Columbia University

Constant Balancing. We set the constants γ∗ = γ∗(ρ) := min{γ′
∗, γ

′′
∗}, β = β(ρ), and

ε′
1 = ε′

1(ρ) to satisfy the equations

γ∗(ρ) = 9.0324× 10−3 · β(ρ) (5.24)

=
1−H

(1−ε′
1(ρ)
2

)
4 · ρ (5.25)

= 4− 2H(1/4)− ε′
1(ρ)

4 · ρ− 1
2 −

β(ρ)
4 . (5.26)

Alternatively, we can write the speedup as Ω(nα) for

α = 1 + 2γ
2ρ ∈ (0, α∗(ρ)) and

α∗(ρ) : = 1 + 2γ∗(ρ)
2ρ .

In the density range
1

2−H(1/4) < ρ ≤ 1 + Θ
(

1
log n

)
,

which we assume without loss of generality (5.12), the minimum speedup of Algorithm 5.5
over Meet-in-the-Middle is a factor of Ω̃(nα∗(1)) ≥ Ω(n0.5023) when word length is linear
ℓ = Θ(n).

The result listed is the speed-up acheived for worst-case ℓ; for other density values, the
speed-up varies. We plot the values α∗(ρ), γ∗(ρ), β(ρ), and ε′

1(ρ) over the density range
1

2−H(1/4) < ρ ≤ 1 + Θ
(

1
log n

)
in Figure 5.4. The maximum speed-up, a factor of

Ω̃(n(2−H(1/4))/2) ≥ Ω(n0.5943),

occurs when word length is the slightly superlinear ℓ = Θ(n2−H(1/4)) ≈ Θ(n1.1887).

5.5.1 Auxiliary Lemmas
Lemma 22 (Finding a Subset C with Large §(C)). Fix any integer p and multiset Y of
cardinality n satisfying

|Y mod p| > ℓρ

log ℓ.

There exists a subset C ⊆ Y of cardinality

|C| = 1
2 log

(
ℓρ

log ℓ

)

satisfying |§(C) mod p| = 2|C|. Moreover, we can recover C in time poly(ℓ) = poly(n).

139

Tim Randolph Columbia University

(a) α∗(ρ) (b) γ∗(ρ)

(c) β(ρ) (d) ε′
1(ρ)

Figure 5.4: Plot of α∗(ρ), γ∗(ρ), β(ρ), and ε′
1(ρ) in the range 1

2−H(1/4) < ρ ≤ 1 + Θ(1
log n

).

140

Tim Randolph Columbia University

Proof. We create the subset C ⊆ Y using a simple greedy algorithm, as follows:

1. Define C0 := ∅.

2. For i ∈ [1
2 log(ℓρ/ log ℓ)]:

(a) Select any yi ∈ (Y \ Ci−1) which satisfies yi ̸= (c′ − c′′) (mod p) for any two
c′, c′′ ∈ §(Ci−1).

3. Set Ci := Ci−1 ∪ {yi}.

The existence of a satisfactory value yi in step 2(a) is guaranteed because the intermediate
subset Ci−1 has at most |§(Ci−1)| ≤ 2i−1 subset sums, and thus

|{(c′ − c′′) mod p | c′, c′′ ∈ Ci−1}| ≤
ℓρ

log ℓ < |Y mod p|.

Lemma 23 (Finding a Subset D with Small §(D)). Fix a integer p = Θ(ℓ1+β/2) and a
multiset Y of cardinality Θ(n). There exists a subset D ⊆ Y of cardinality(

2− ρ+ β

2

)
log ℓ

such that
|§(D) mod p| = Õ(ℓ1−ρ+β/2).

Moreover, we can recover D in time poly(ℓ) = poly(n).

Proof. For a sufficiently small quantity

q = Θ
(

n

log ℓ

)
= Θ

(
ℓρ

log ℓ

)
,

partition [p] = ⊔
j∈[q] Pj into the collection of arithmetic progressions

Pj := {r ∈ [p] | r = j (mod q)} for j ∈ [q],

each of which contains ⌈p/q⌉ or ⌊p/q⌋ many residues. By the pigeonhole principle, for at
least one of these progressions Pj∗ the set

Yj∗ := {y ∈ Y | y ∈ Pj∗ (mod p)}

has cardinality at least

|Yj∗| ≥ |Y |
q

>

(
2− ρ+ β

2

)
log ℓ.

141

Tim Randolph Columbia University

We can find such a progression Pj∗ and the corresponding subset Yj∗ in time poly(ℓ) =
poly(n). Let D = {yi}i∈[|D|] be an arbitrary subset of Yj∗ containing

(
2− ρ+ β

2

)
log ℓ ele-

ments. Each selected yi falls into the residue class

(yi mod p) = q · ki + j∗,

where
ki :=

⌊
yi (mod p)

q

⌋
≤ p

q
.

Thus D satisfies

|§(D) mod p| ≤ |§({ki}i∈[|D|])| · |D|
≤ Σ({ki}i∈[|D|]) · |D|

≤ p

q
· |D|2

= O(ℓ1−ρ+β/2 · log3(ℓ))

distinct subset sums modulo p, as desired.

Below, Lemmas 24 and 25 refine Lemmas 6 and 20, respectively, to leverage bit packing
techniques in the specific context of Algorithm 5.5.

Lemma 24 (Speedup via Additive Structure). Let (X, t) be a Subset Sum instance. Given
a subset Y ⊆ X of size

|Y | ≤ n− log ℓ
2

such that
|§(Y)| ≤ 2|Y | · ℓ−ε

for some constant
0 < ε <

|Y |
log ℓ

The instance (X, t) can be solved in time Õ(2n/2 · ℓ−(1+ε)/2) with arbitrarily high constant
probability and with no false positives.

Proof. Fix any partition X = A ⊔B ⊔D such that

|D| = log ℓ, |A| = n− (1− ε) log ℓ
2 with A ⊇ Y, and |B| = n− (1 + ε) log ℓ

2 .

We have

|§(A)| ≤ 2|A\Y | · |§(Y)|

142

Tim Randolph Columbia University

≤ 2n/2 · ℓ−(1+ε)/2

and
|§(B)| ≤ 2n/2 · ℓ−(1+ε)/2.

Applying Lemmas 2 and 3 and Theorem 7, it takes expected time O(2n/2 · ℓ−(1+ε)/2 · log ℓ)
to create the sorted lists §⃗(A), §⃗(B) and to run BitPacking (Algorithm 5.1).

Cutting off the algorithm if it takes longer than a large constant times the expected
runtime yields a Monte Carlo algorithm with one-sided error by Markov’s inequality.

Lemma 25 (Speedup via Unbalanced Solutions). Let (X, t) be a Subset Sum instance, and
let Y ⊆ X be a subset of of size |Y | = c log ℓ such that some solution S ⊆ X satisfies
|S ∩ Y | /∈ (1± ε) |Y |

2 for some constants c > 0, ε ∈ (0, 1). Then S can be found in time

Õ(2n/2 · ℓ−(1+δ)/2),

where
δ :=

(
1−H

(1− ε
2

))
· c,

with arbitrarily high constant probability.

Proof. Combine the proofs of Lemmas 20 and 24.

Lemma 26 (Hashing and Packing; Line 8 of Algorithm 5.5).

1. Line 8 of Algorithm 5.5 enumerates the lists HA, t′ and HB, t′ in time Õ(k).

2. The lists HA, t′ and HB, t′ use |HA, t′|+ |HB, t′| = Õ(k · ℓ−1) words.

Proof. Line 8 creates HA, t′ , HB, t′ using the subroutine SampleList (Algorithm 5.5). The
claimed runtime of Õ(k) follows from the fact that the input list RA, t′ contains

|RA, t′ | ≤
∑
a′
|Qa′| ≤ k

sum-collection couples by construction (Lemma 21 and Line 6), and Algorithm 5.5 goes
through it once, spending time O(log ℓ) on each couple to compute the hash hm(a′).

To see that the output list HA, t′ is stored in Õ(k ·ℓ−1) many ℓ-bit words, we first observe
that a single hash-collection couple (hm(a′), Qa′) takes at most

m+ |Qa′ | · |C| ≤ m+ |Q+e3(C)| · |C|
≤ m+ 2|C| · |C|
= Õ(ℓ1/2)

143

Tim Randolph Columbia University

Subroutine SampleList(RA, t′ , hm)

Input: A sorted list RA, t′ containing elements in the sum-collection couple format
(a′, Qa′), and a hash function hm.
Output: A hashed and packed list HA, t′ .

7(a) Initialize indices i, j := 0. While i < |RA, t′|, set three words of HA, t′ as follows:

7(b) HA, t′ [3j] := a′
i stores the integer a′

i, the smallest not-yet-packed sum.

7(c) HA, t′ [3j + 1] := ((hm(a′
i), Qa′

i
), (hm(a′

i+1), Qa′
i+1

), . . .) packs as many
hash-collection couples as will fit into a single ℓ-bit word.
Update i to the index of the next not-yet-packed sum in RA, t′ .

7(d) HA, t′ [3j + 2] := a′
i−1 stores the integer a′

i−1, the largest already-packed sum.

7(e) Increment j ← j + 1.

Figure 5.5: The Sample-Packing subroutine.

= o(ℓ)

many bits, for m = 3 log ℓ and

|C| = max
{

1
2 log

(
ℓρ

log ℓ

)
, β log

(
ℓ

β log ℓ

)}

≤ 1
2 log ℓ

(Line 0 and Figure 5.4c). That is, a single word HA, t′ [3j + 1] created in Line 7(c) has at
most o(ℓ) many unused bits, which is negligible compared to the word length. Moreover, all
of the |RA, t′| ≤ ∑a′ |Qa′ | ≤ k(ℓ) many hash-collection couples (hm(a′), Qa′) take a total of
at most

|RA, t′ | ·m+
∑
a′
|Qa′| · |C| ≤ k · 3 log ℓ+ k · 12 log ℓ

= Õ(k)

many bits. Accordingly, a total of Õ(k) · ℓ−1 = Õ(k · ℓ−1) many words HA, t′ [3j + 1] are
created throughout all the executions of Line 7(c). The entire output list HA, t′ has three
times as many words because of the additional elements storing the highest and the lowest
values hashed into each word HA, t′ [3j + 1].

144

Tim Randolph Columbia University

Subroutine SearchList(t′′, RA, t′ , RB, t′ , HA, t′ , HB, t′)

Input: A shifted target t′′ and sorted lists RA, t′ , RB, t′ , HA, t′ , HB, t′ for t′ = (t′′ mod p).

9(a) Initialize indices i := 0 and j := |HB, t′| − 1. While i < |HA, t′| and j ≥ 0:

9(b) If the indexed words HA, t′ [3i+ 1], HB, t′ [3j + 1] contain hash-collection
pairs (hm(a′), Qa′), (hm(b′), Qb′) with

hm(a′) + hm(b′) ∈ hm(t′′)− {0, 1} (mod 2m)
and Qa′ ∩Qb′ = ∅ for some Qa′ ∈ Qa′ , Qb′ ∈ Qb′ , use Lemma 21 to search the
corresponding sublists of RA, t′ , RB, t′ for a solution as described in the proof
of Lemma 27. Halt and return “yes” if a solution is found.

9(c) If HA, t′ [3i] +HB, t′ [3j + 2] < t′′, set i← i+ 1. Otherwise, set j ← j − 1.

Figure 5.6: The Sample-Searching subroutine.

Lemma 27 (Searching for Solutions; Line 10 of Algorithm 5.5).

1. Correctness: Line 10 of Algorithm 5.5 finds a solution if the lists RA, (t′′ mod p) and
RB, (t′′ mod p) contain one.

2. Runtime: Line 10 of Algorithm 5.5 finds a solution in expected time Õ(k/ℓ).

Proof. Correctness. Algorithm 5.6 adapts Lines 5-7 of Algorithm 5.1 for the lists HA, t′ ,
HB, t′ to address two additional issues: First, not only a hash collision but also a pair of
overlapping near-quartersets in HA, t′ , HB, t′ may incur a false positive. Second, each word
in HA, t′ , HB, t′ packs an uncertain amount of hash-collision pairs (while Algorithm 5.1
processes exactly (ℓ/m) hashes per iteration).

Line 9(b) settles the first issue by modifying the “If” test in line 5 of Algorithm 5.1. This
new test is implemented by PackedOV. Recall that PackedOV it takes as input two packed
words

u = ((hm(a′
1), Qa′

1
), (hm(a′

2), Qa′
2
), . . .) and

v = ((hm(b′
1), Qb′

1
), (hm(b′

2), Qb′
2
), . . .),

where each hm(a′), hm(b′) is a hashed value and each Qa′ , Qb′ ⊆Q+e3(C) is a collection of
near-quartersets. PackedOV(u, v) returns 1 if and only if two conditions hold: first, there is a

145

Tim Randolph Columbia University

pair of hash-collection couples (hm(a′),Qa′), (hm(b′),Qb′) with hm(a′) +hm(b′) ∈ hm(t′′)−
{0, 1} (mod 2m); second, there are two disjoint near-quartersets Qa′∩Qb′ = ∅, for Qa′ ∈ Qa′ ,
Qb′ ∈ Qb′ , in the packed collections indexed by hm(a′), hm(b′). PackedOV is an AC0 operation
on two words and takes constant time to evaluate in the circuit RAM model, since all hash-
collection couples can be checked in parallel.

Now on comparing any two words HA, t′ [3i+ 1], HB, t′ [3j + 1], by the second condition
above, overlapping near-quartersets never incur false positives. Hence like Algorithm 5.1,
the new “If” test in Line 9(b) is passed by every correct solution and (some of) the hash
collisions. We further verify such a potential solution by returning back to the (unhashed)
lists RA, t′ , RB, t′ and checking all the sum-collection couples that are packed into HA, t′ [3i+
1], HB, t′ [3j + 1], namely the two sorted sublists

{(a′, Qa′) |HA, t′ [3i] ≤ a′ ≤HA, t′ [3i+ 2]} and
{(b′, Qb′) |HB, t′ [3j] ≤ b′ ≤HB, t′ [3j + 2]}.

Either sublist is stored in at most (ℓ/m) words by construction (see Algorithm 5.5, Line 7(c)).
Hence by Lemma 21, this verification process takes time O(ℓ/m) = poly(n).

Line 9(c) settles the second issue by replacing the test in Line 7 of Algorithm 5.1 with a
new test: whether

HA, t′ [3i] + HB, t′ [3j + 2] < t′′

holds. By construction (Algorithm 5.5), HA, t′ [3i] and HB, t′ [3j + 2] are the exact values of
the smallest sum packed into HA, t′ [3i + 1] and the largest sum packed into HB, t′ [3j + 1],
respectively. By the same argument as in the proof of correctness for Algorithm 5.1, in a
single scan of HA, t′ and HB, t′ , we never miss a pair of words that packs a correct solution.

Runtime. Algorithm 5.6 performs a single scan of HA, t′ and HB, t′ , plus the verification of
at most one correct solution versus the hash collisions. Using the same argument as in the
proof of runtime for Algorithm 5.1 (Line 6), the expected verification time

poly(n) + (|HA, t′|+ |HB, t′ |) · on(1)

is dominated by the scan time, which is

O(|HA, t′ |+ |HB, t′ |) = Õ(k/ℓ),

by Lemma 26.

5.5.2 Adapting Algorithm 5.5 to Word RAM
Corollary 9. Algorithm 5.5 solves the Vanilla Subset Sum problem with constant success
probability in time O(2n/2 ·n−(1/2+γ)) for some constant γ > 0.0023 in the word RAM model.

146

Tim Randolph Columbia University

Proof. As in Section 5.4, to adapt Algorithm 5.5 to the word RAM model, we run the
algorithm as if the word length were ℓ′ := 0.1n and memoize PackedOV to speed up the
evaluation of this function. There are three additional modifications to the algorithm:

1. Line 7(a) sets ⌈ℓ′/ℓ⌉+ 2 words (rather than three words) in a single iteration, i.e., the
single word set in Line 7(c) is replaced with ⌈ℓ′/ℓ⌉ = Θ(1) words because a single word
with ℓ bits may be insufficient.

2. Before the execution of Line 9, create a table PackedOV′ that memoizes all input-output
results of the boolean function PackedOV, in time (2ℓ′)2 · poly(ℓ′) = O(20.21n). We also
replicate the table OV′ described in Section 5.4.4. Then either table can be accessed
using a 2⌈ℓ′/ℓ⌉ = Θ(1)-word index in constant time.

3. Line 9(b) replaces the functions PackedOV (used in Lemma 27) and OV (used in Lemma 21)
with constant-time lookup into the above memoized tables PackedOV′ and OV′, respec-
tively.

Compared with running Algorithm 5.5 itself for ℓ′ = 0.1n, the only significant difference
of this word RAM variant is that the number of packed words in HA,t′ and HB,t′ increases
by a Θ(1) factor, so we can easily check correctness and that runtime remains the same up
to an Θ(1) factor.

147

Chapter 6

Subset Sum Parameterized in the
Doubling Constant

This section includes work from [RW23]. Although what follows has been refurbished for
inclusion in this thesis, the arguments presented represent the collaborative efforts of the
two original authors, Karol Węgrzycki and I.

This chapter contains the following subsections:
• Summary of Results.

• The Constructive Freiman’s Theorem. Given a set with constant doubling, the
generalized arithmetic progression guaranteed by Freiman’s Theorem can be explicitly
constructed in time FPT in the doubling constant.

• C-Integer Programming. When the column set of the constraint matrix of an
integer program has doubling constant C, an instance I of Integer Programming with
n bounded variables can be solved in time nOC(1) · poly(|I|).

• C-Subset Sum. Subset Sum parameterized in the doubling constant admits an XP-
algorithm. Binary Integer Linear Programming Feasibility can be reduced to Subset
Sum. Hyperplane-Constrained Binary Integer Linear Programming feasibility can be
solved in time ∆O(m) ·poly(n) if and only if Subset Sum is FPT in the doubling constant.

• C-Unbounded Subset Sum. Unbounded Subset Sum parameterized in the doubling
constant admits an algorithm that runs in time nOC(log log log n), or in time nOC(1) if ILP
instances on v variables can be solved in time 2O(n)poly(|I|).

• (C, k)-SUM with Constant Doubling. k-SUM is Fixed-Parameter Linear when
parameterized in the doubling constant C in addition to k; this result is tight for k = 4
and nearly tight for larger k.

148

Tim Randolph Columbia University

The field of parameterized complexity tackles hard problems by solving instances whose
structural complexity is captured by a certain numeric parameter. Often, this parameter is
a natural part of the problem. For example, when searching a large object for a substructure
such as a clique or subgraph or for a global superstructure such as a set cover or dominating
set, the size of the structure is a natural measure. Alternatively, parameters may be cho-
sen because they effectively capture the complexity of the problem, because they are often
bounded in instances arising from real-world applications, or both (for example, treewidth
and twin-width). See, e.g., [CFK+15, DF12] for introductions to parameterized complexity.

Both pseudopolynomial Subset Sum and k-SUM can be viewed as parameterized versions
of the problem (in terms of the size of the target t and the number of elements k in the solu-
tion, respectively). Both parameterizations allow more efficient solutions when the relevant
parameter is small, and come with their own runtime barriers (O(t1−ε2δn) and O(t1−εnδk) for
δ’s that depend on ε, and perhaps also O(n⌈k/2⌉) (see [ABHS22] for the former two claims,
and [CWX22, FKP23] for some recent work on the 3-SUM hypothesis).

It is natural to consider small numbers and small solutions, but it is also natural to
ask: when is it possible to efficiently find large solutions on instances with large inputs?
Fortunately, there is another natural parameter, frequently used in the field of additive com-
binatorics to measure additive structure. This is the doubling constant. Sets with constant
doubling have a variety of structural properties that make them desirable to work with (see
Section 1.1.3, Additive Structure). In this section, we show that existing results from addi-
tive combinatorics, made constructive, can be used to establish a close connection between
Subset Sum and Integer Programming, and to design more efficient algorithms for both
problems.

In addition, this chapter takes inspiration from an emerging trend in the literature of fine-
grained complexity and algorithms: the “import” of results from additive combinatorics. In
several recent works, researchers have achieved breakthroughs by taking central existential
results from the field of additive combinatorics and modifying their proofs to make the results
explicitly and efficiently constructive.

For example, in 2015 Chan and Lewenstein proved a version of the Balog-Szemeredi-
Gowers (BSG) theorem that allows certain sets guaranteed by the theorem to be constructed
algorithmically [CL15]. They then leveraged this result to solve the (min,+)-convolution and
3-SUM problems on monotone sets of small integers. Recently, the constructive BSG theorem
found new applications. In 2022, Abboud, Bringmann and Fischer used this result, as well
as a constructive version of Ruzsa’s covering lemma, as a key ingredient in their proofs of
lower bounds for approximate distance oracles and listing 4-cycles [ABF23]. In the same
year, Jin and Xu independently proved similar lower bounds and used the constructive BSG
theorem to reduce 3-SUM to 3-SUM on Sidon sets [JX23]. More broadly, these works reflect
the increasing role of additive combinatorics in theoretical computer science over the last
few decades; for general references, see [Tre09, Vio11, Bib13, Lov17].

149

Tim Randolph Columbia University

6.1 Summary of Results
A Constructive Freiman’s Theorem. We begin by unlocking a new tool to help

us manipulate problem instances with significant additive structure. Freiman’s Theorem,
a cornerstone result in additive combinatorics, states that every integer set with constant
doubling is contained inside a small (generalized) arithmetic progression. We make this
theorem efficiently constructive by showing how an algorithm can obtain such an arithmetic
progression in time ÕC(n) (Theorem 15). Later in the chapter, we use this theorem to reduce
Subset Sum with constant doubling to a constrained integer programming problem and to
design efficient algorithms for Unbounded Subset Sum. We hope that, like the constructive
BSG theorem discussed above, the constructive statement of Freiman’s Theorem may find
other independent applications.

Integer Programming with Constant Doubling. Many problems in combinatorial
optimization can be formulated as an integer linear program (ILP). An ILP is an optimization
problem of the following form:

max
{
c⃗ · x⃗

∣∣∣ Ax⃗ = b⃗, x⃗ ∈ Zn
≥0

}
,

where A ∈ Zm×n, c⃗ ∈ Zn and b⃗ ∈ Zm. An integer program specified by a constraint matrix
A ∈ Zm×n and solution vector b⃗ ∈ Zm is feasible if there exists a solution x ∈ Zn

≥0 such that
Ax⃗ = b⃗.

In our setting, we consider integer programs in which the set of column vectors

A := {A[·, j] | | j ∈ [n]}

has constant doubling: |A + A| ≤ C|A|, for a constant C. We prove that an instance
I of ILP feasibility with constant doubling and n binary variables can be solved in time
nOC(1) ·poly(|I|). This follows from Freiman’s Theorem (without construction) and a dynamic
programming algorithm. The theorem also holds in the case where the variables x1, x2, . . . , xn

have upper and lower bounds of magnitude poly(n).

Subset Sum with Constant Doubling. Our result for integer programming with
constant doubling implies an nOC(1)-algorithm for Subset Sum (Corollary 11).

Assuming the Exponential Time Hypothesis (ETH), there is no 2o(n) time algorithm
for Subset Sum. Because C = O(n), this means that we cannot hope for a 2o(C)no(C/ log(C))

algorithm for C-Subset Sum under the ETH. However, this lower bound does not exclude
an 2O(C) · nO(1) algorithm. A natural question is thus whether our upper bound can be
improved to an Fixed-Parameter Tractable (FPT) result: can C-Subset Sum be solved in time
OC(poly(n))? We show that this result appears unlikely by way of an interesting connection

150

Tim Randolph Columbia University

to the feasibility of integer programs with binary variables. We prove that Subset Sum
with constant doubling can be solved in time OC(poly(n)) if and only if an instance I of
Hyperplane-Constrained Binary ILP (HBILP) can be solved in time ∆O(m) ·Om(poly(|I|)).

HBILP considers a constraint matrix A ∈ Zm×n with entries bounded by ∆ := ∥A∥∞,
and asks whether there exists a solution x ∈ {0, 1}n such that Ax⃗ · s⃗ = t for a certain target
t and “step vector” s⃗ ∈ Zm orthogonal to a hyperplane. The best existing algorithm solves
HBILP Feasibility in time Om(|I|)+∆O(m2) ([DLRV23], Corollary 2). However, as previously
noted in [DLRV23], reducing the exponent of ∆ from O(m2) to O(m) would be analogous to
the recent improvement achieved by Eisenbrand and Weismantel for integer programs with
unbounded variables [EW19]. Our result implies that finding an FPT algorithm for Subset
Sum with constant doubling would be equivalent to solving this problem.

We can also reduce ILP Feasibility with bounded variables to HBILP feasibility (Lemma 36),
which means that an FPT algorithm for Subset Sum with constant doubling would further
imply a ∆O(m) · poly(n) algorithm for ILP Feasibility with bounded variables (Corollary 12).
One of the most significant open questions in the parameterized complexity of integer pro-
gramming is whether the ∆O(m) ·Om(|I|)-time algorithm for ILPs with unbounded variables
can be extended to ILPs with bounded variables [EW19]. Our results imply that an FPT al-
gorithm for Subset Sum with bounded doubling would allow us to determine the feasibility of
ILPs with bounded variables in a similar runtime, which would be a significant breakthrough
in the area [JR18, KPW20].

Unbounded Subset Sum with Constant Doubling. We can reduce an instance
of Unbounded Subset Sum with constant doubling to an ILP with m constraints, n binary
variables, and entries of A bounded by ∆ = nO(1/d(C)) using our constructive Freiman’s
theorem. Because solvable ILPs with bounded ∆ admit solutions with small support, this
allows us to solve Unbounded Subset Sum in time nOC(log log log n) using the current best
algorithm for solving ILPs, or in time nOC(1) under the hypothesis that a v-variable ILP I
can be solved in time 2O(v)poly(|I|) (Theorem 18).

k-SUM with Constant Doubling. The application of recent algorithms for sparse
nonnegative convolution [BFN22] allows us to solve k-SUM with constant doubling in time
Õ(C⌈k/2⌉ · 2O(k) · n) (Theorem 19).

Because the k-SUM conjecture implies a lower bound of Ω(C⌈k/2⌉−1n), this leaves a C-
factor gap. Part of the gap can be explained by the fact that the Plünnecke-Ruzsa inequality,
which we use to derive the upper bound, does not give the optimal exponent for C; applying
recent improvements to the inequality narrows the gap slightly. In the specific case of (C, 4)-
SUM, our algorithm achieves a runtime of Õ(Cn), which is optimal up to polylogarithmic
factors under the k-SUM conjecture.

151

Tim Randolph Columbia University

6.2 Freiman’s Theorem Made Constructive
Freiman’s Theorem states that any integer set X with constant doubling is contained inside
a generalized arithmetic progression of constant dimension and volume at most |X| times a
constant.
Theorem 14 (Freiman’s Theorem, [Fre64], see [Zha22] for a modern presentation). Any
finite integer set X with |X + X| ≤ C|X| is contained in a GAP P of dimension d(C) and
size (volume) v(C)|X|, where d and v are computable functions that depend only on C.

We make this statement constructive by showing an algorithm that, given X, can explic-
itly construct the progression P in FPT time. In fact, the construction is near-linear, losing
only a polylog(n) factor and a (large) function of C.
Theorem 15 (FPT Freiman’s Theorem). Let A be a set of n integers satisfying |A + A| ≤
C|A|. There exists an ÕC(n) algorithm that, with probability 1− n−γ for an arbitrarily large
constant γ > 0, returns1 an arithmetic progression

P = {x1ℓ1 + x2ℓ2 + · · ·+ xd(C)ℓd(C) : ∀i, ℓi ∈ [Li]} ⊇ A

with dimension d(C) and volume v(C) · |A|, where d and v are computable functions that
depend only on C.

Making Freiman’s Theorem constructive is not difficult from a strictly algorithmic per-
spective. However, verifying the result requires close attention to the structure of the original
proof and requires concepts from additive combinatorics, group theory and the geometry of
numbers along the way. For this reason, we closely follow Zhao’s recent exposition of a proof
due to Ruzsa [Ruz94], making modifications where necessary. We wish to emphasize that
neither the existential results nor the overall proof structure below are novel. Our contribu-
tion is the introduction of algorithmic techniques required to make the proof constructive in
near-linear time.

Given a set X of cardinality n, our proof constructs a GAP P of dimension d(C) = 2CO(1)

and volume v(C) = 22CO(1)
n, as in the original statement of Freiman’s Theorem. We do not

attempt to optimize these functions, but we suspect that techniques used to optimize d and
v in subsequent proofs of Freiman’s Theorem (e.g., [Cha02, Sch11, San12, San13]) could be
used to improve the dependence on C in our results.

At several points, we make use of the Plünnecke-Ruzsa Inequality, a useful bound on the
additive “growth rate” of integer sets with small doubling constant:
Lemma 28 (Plünnecke-Ruzsa Inequality). If X is a finite subset of an abelian group and
|X +X| ≤ C|X| for a constant C, then for all nonnegative integers s and t,

|sX − tX| ≤ Cs+t|X|.
1Specifically, we compute the values x1, x2, . . . , xd(C) and L1, L2, . . . Ld(C).

152

Tim Randolph Columbia University

6.2.1 Ruzsa’s Modeling Lemma
A core ingredient in Freiman’s theorem is Ruzsa’s Modeling Lemma. This allows us to take
an integer set A and map a large piece of it to small, finite group (specifically, the prime
cyclic group Z/qZ) in such a way that additive structure is “preserved”: the image in Z/qZ
behaves isomorphically to the preimage in Z under addition, up to a certain fixed number
s of additions. The size q of the prime cyclic group is controlled by the size of |sA − sA|,
which is related to the doubling constant by the Plünnecke-Ruzsa Inequality.

A map that preserves additive structure in this way is called a Freiman s-isomorphism:

Definition 4 (Freiman Homomorphism and Isomorphism). Given subsets A and B of two
(possibly different) abelian groups and a positive integer s ≥ 2, ϕ : A → B is a Freiman
s-homomorphism if

ϕ(a1) + · · ·+ ϕ(as) = ϕ(a′
1) + · · ·+ ϕ(a′

s)
for all pairs of s-tuples in A satisfying a1 + · · · + as = a′

1 + · · · + a′
s. ϕ is a Freiman s-

isomorphism if ϕ is a bijection and both ϕ and ϕ−1 are Freiman s-homomorphisms.

Lemma 29 (Constructive Ruzsa’s Modeling Lemma, c.f. [Zha22] Theorem 7.7.3). Let A be
a set of n integers with |A + A| ≤ C|A|, set ∆ = maxa∈A |a|, let s ≥ 2 be a fixed constant,
and set m = 4C2sn. There exists an O(n+ polylog(∆))-time algorithm that:

1. with probability at least 1/2, returns a mapping ψ : Z→ Z/mZ and a set A′ ⊂ A with
|A′| ≥ |A|/s such that ψ is a s-Freiman isomorphism from A′ to ψ(A′), and

2. with probability at most 1/2, returns ‘failure’.

Proof. Fix any prime q > max(sA − sA). As |max(sA − sA)| ≤ s∆, we can find a prime
of this size with high probability in time Os(polylog(∆)) by repeatedly guessing and testing
primality [Agr04].

For each value λ ∈ [q], let ϕλ denote the map ϕλ : Z→ Z/qZ→ Z/qZ→ Z that

1. first maps a ∈ Z to a′ = a (mod q) ∈ Z/qZ,

2. computes a′′ = λa′ in Z/qZ,

3. then maps a′′ back to [0 : q − 1] ⊂ Z via the identity map.

Choose λ ∈ [q − 1] uniformly at random. Since q is prime, any element r ∈ [q − 1] is a
generator for Z/qZ, and thus for any r ∈ [q − 1], ϕλ(r) is uniformly distributed over [q − 1].
Since q > max(sA− sA), for any nonzero integer c ∈ sA− sA, c ∈ [q − 1] and thus ϕλ(c) is
uniformly random over [q − 1].

Thus for any nonzero c ∈ sA−sA the probability that ϕλ(c) is divisible by m is less than
2/m. As m = 4C2sn ≥ 4|sA−sA| by Lemma 28, |sA−sA| ≤ m/4 and the probability that m

153

Tim Randolph Columbia University

evenly divides any nonzero element in sA− sA is less than 1/2 by a union bound. Compute
ϕλ(A) in time O(n) and output “failure” if m divides any element in this set. Otherwise,
continue.

Let A′ be a subset of A such that |A′| ≥ n/s and diam(ϕλ(A′)) ≤ q/s. Note that the
existence of A′ is guaranteed by the pigeonhole principle. We can compute A′ in time O(n)
by partitioning [q] into evenly-sized intervals and computing ϕλ(A).

Finally, we define ψλ : Z → Z/mZ by ψλ(x) = ϕλ(x) (mod m) and observe that ψλ is
a s-isomorphism from A′ to ψλ(A′) as m does not divide any nonzero element in sA − sA.
This follows from the final two paragraphs of the proof of Theorem 7.7.3 in [Zha22], with
the argument unchanged.

6.2.2 Bogolyubov’s Lemma in Z/mZ
Given a relatively large set B ∈ Z/mZ, Bogolyubov’s Lemma states that 2B − 2B contains
a set of points that behaves “like a subspace” in the sense that each point is “close to
orthogonal” to a certain set R ∈ Z/mZ. Specifically, we employ the concept of a Bohr set,
defined as

Bohrm(R, ε) := {x ∈ Z/mZ : ∥rx/m∥R/Z ≤ ε, for all r ∈ R}.
(Recall that the norm ∥·∥R/Z denotes distance from the nearest integer.) We refer to |R| as
the dimension and ε as the width of the Bohr set.

A Bohr set is analogous to a subspace of codimension |R|, in the sense that if we add
together several elements of a Bohr set, their sum is still close to a multiple of m when scaled
by any r ∈ R. In this sense, we can view Bogolyubov’s lemma as a statement that sets of
the form 2B − 2B ∈ Z/mZ contain subsets with group-like structure.

Lemma 30 (Constructive Bogolyubov’s lemma for Z/mZ, c.f. [Zha22] Theorem 7.8.5).
Given B ⊆ Z/mZ with |B| = αm, we can compute R ⊆ Z/mZ of dimension |R| < 1/α2

such that Bohr(R, 1/4) ⊆ 2B − 2B in time Õ(m).

Proof. To make Bogolyubov’s lemma in Z/mZ constructive, it suffices to observe that R is
defined explicitly as

R = {r ∈ Z/mZ \ {0} : |1̂B(r)| > α3/2}.

Here 1̂B is the finite group Fourier transform of 1B, the membership function of B:

1̂B(r) = 1
m

∑
x∈Z/mZ

1B(x)e− 2πirx
m .

Computing R directly using the Fast Fourier Transform takes time O(m logm).

154

Tim Randolph Columbia University

6.2.3 Finding a GAP in a Bohr Set
The structured nature of the Bohr set is instrumental in constructing a generalized arithmetic
progression: in fact, we can show that every Bohr set contains a large GAP. In order to prove
this, we need to introduce definitions from the geometry of numbers.

Definition 5 (Successive Minima and Directional Basis). Let Λ ⊆ Rd be a lattice and
T ⊆ Rd be a centrally symmetric convex body.

For i ∈ [d], the ith successive minimum λi of T with respect to Λ is the minimum value
such that Λ ∩ λi · T contains i linearly independent lattice vectors.

A directional basis of T with respect to Λ is a basis {⃗b1, b⃗2, . . . , b⃗d} of Rd such that for
each i ∈ [d], b⃗i ∈ λiT .

In visual terms, we can imagine constructing a directional basis by gradually scaling the
convex body T outward from the origin. Every time T engulfs a new lattice vector v⃗, we
add v⃗ to our directional basis if and only if v⃗ is linearly independent from the current set of
basis vectors.

Lemma 31 (Constructing a Large GAP in a Bohr Set, c.f. [Zha22] Theorem 7.10.1). Let
m be a prime. Given a set R ⊆ Z/mZ of size |R| = d and ε ∈ (0, 1), we can compute a
proper GAP P ⊆ Bohr(R, ε) with dimension at most d and volume at least (ε/d)dm in time
Õd(m).

Proof. Let R = {r1, r2, . . . , rd} be a subset of Z/mZ (recall that m is a prime). We can
directly compute the vector v⃗ = (r1

m
, . . . , rd

m
) ∈ Rd to define the lattice

Λ = Zd + Zv⃗ ⊆ Rd.

Note that the lattice vectors are not necessarily integral, and we have not yet computed
a lattice basis: the set {e⃗1, e⃗2, . . . , e⃗d, v⃗}, where e⃗i denotes the standard basis vector in
dimension i, spans the lattice but is not linearly independent.

Let r′ be any nonzero element of R. Since Z/mZ is a cyclic group of prime order, r′

generates Z/mZ. Thus, because one component of v⃗ is r′/m, the translations of the integer
lattice {Zd + γv⃗}γ∈[m] are all disjoint. Since

Λ = Zd + Zv⃗ ⊆
⋃

γ∈[m]
Zd + γv⃗,

we have that Λ is the disjoint union of m translates of the integer lattice. This implies
that there are exactly m lattice points of Λ within each translate of the unit cube, and,
equivalently, that det(Λ) = 1/m.

As a result, we can enumerate the set

C := {∥γr′/m∥R\Z : γ ∈ [m]} − {0, 1}d,

155

Tim Randolph Columbia University

the set of all 2d ·m lattice points in the cube Λ ∩ [−1, 1)d, in time O(2d ·m) = Od(m).
Next, we sort the set C according to the L∞ metric, which takes time Õd(m). This

coincides with our definition of the successive minima of a cube centered on the origin with
respect to Λ: if λi is the ith successive minima of [−ε, ε]d with respect to Λ, then the ith
directional basis vector satisfies ∥⃗bi∥∞ ≤ λi[−ε, ε]d.

Construct the successive minima λ1, . . . , λd and the directional basis b⃗1, . . . , b⃗d of [−ε, ε]d
with respect to Λ by greedily adding independent lattice vectors to our basis from short
to long according to the L∞ metric. Checking whether each subsequent lattice vector is
independent from the previous set takes time Od(1) using Gaussian elimination. Because
[−1, 1)d contains d linearly independent lattice vectors (consider the standard basis), our
directional basis is guaranteed to be contained in Λ ∩ [−1, 1)d = C.

To complete the construction of the GAP in [Zha22, Theorem 7.10.1], we observe that the
proper GAP P is defined explicitly in terms of the directional basis of [−ε, ε]d with respect
to Λ that we have just constructed. Specifically, we have

P = {ℓ1x1 + · · ·+ ℓdxd | ∀i ∈ [d], ℓi ∈ [Li]},

where each xi is the unique element in [0 : m−1] such that b⃗i ∈ xiv⃗+Zd and Li := ⌈1/(λid)⌉.
Each Li can be computed directly, and each xi can be computed in time O(m).

6.2.4 Ruzsa’s Covering Lemma
Ruzsa’s covering lemma states that if the sumset |Y +Z| is small relative to |Y |, it is possible
to cover Z with a small number of translates of Y − Y . A rough intuition for this result
is that it is a statement about the “conservation of additive structure”: if Y and Z have
“common additive structure” (captured by the condition that |Y + Z| ≤ C|Y |), then Z is
“similar” to Y − Y (in the sense that Z is covered by few translates of Y − Y).

The fact that Ruzsa’s covering lemma can be made efficiently constructive was previously
observed by Abboud, Bringmann, and Fischer [ABF23]:

Lemma 32 (Constructive Ruzsa’s Covering Lemma, [ABF23] Lemma 4.7). Let Y, Z be
nonempty finite subsets of an abelian group. If |Y + Z| ≤ C|Y |, then there exists a sub-
set X ⊆ Z with |X| ≤ C and Z ⊆ Y − Y + X. Moreover, X can be computed in time
Õ
(

|Y −Y +Z|·|Y +Z|
|Y |

)
= Õ(C|Y − Y + Z|).

6.2.5 Proof of Theorem 15: The Constructive Freiman’s Theorem
Proof. Combining the ingredients from the previous subsections allows us to prove The-
orem 15. Let A be a finite integer set with |A + A| ≤ C|A| = Cn. By Lemma 28,
|8A− 8A| ≤ C16|A|.

156

Tim Randolph Columbia University

Choose a prime m = OC(n) satisfying 4C16n < m < 16C16n, which can be accomplished in
time OC(polylog(n)) with high probability by guessing and testing primality [Agr04]. Then,
apply Lemma 29 with s = 8 to compute a set A′ ⊆ A with |A′| ≥ |A|/8 and a mapping ψ such
that ψ is a Freiman 8-isomorphism from A′ to B := ψ(A′) ⊆ Z/mZ with probability at least
1/2 in time Õ(n). We can increase the success probability of this step by repetition: for any
integer constant γ > 0, running the algorithm γ log(n) times lowers the failure probability
to n−γ.

Apply Lemma 30 to B with

α = |B|
m

= |A
′|

m
≥ |A|8m = 1

OC(1) .

This gives us R ⊆ Z/mZ of size 1/α2 = OC(1) such that Bohr(R, 1/4) ⊆ 2B − 2B in time
Õ(m) = Õ(n). Then, apply Lemma 31 to R to compute the proper GAP P ⊂ Bohr(R, ε) ⊆
2B− 2B with dimension at most |R| = OC(1) and volume at least (1/4|R|)|R|m = m/OC(1).

Following the proof of Theorem 7.11.1 (Freiman’s Theorem) in [Zha22], we have that
Q := ψ−1(P) is a GAP of the same dimension and volume satisfying

Q ⊆ 2A′ − 2A′ ⊆ 2A− 2A. (6.1)

Thus
|Q+ A| ≤ |2A− 2A+ A| = |3A− 2A| ≤ C5|A| = OC(1) · |Q|,

where the second inequality uses Lemma 28. Using the fact that |Q + A| = OC(1) · |Q|, we
apply Lemma 32 to Q and A to get a set X of size |X| = OC(1) satisfying A ⊆ Q−Q+X
in time

Õ(C|Q−Q+ A|) = Õ(C|2A− 2A− (2A− 2A) + A|) = Õ(C|5A− 4A|) = Õ(C9|A|),

where the final equality uses Lemma 28. We conclude with the observation that Q−Q+X
is a GAP of dimension OC(1) and volume OC(1) · |Q| = OC(1) · |A|, containing A. Note that
each step in the proof takes ÕC(n) time.

6.2.6 Bounding GAP Coefficients
The following observation further simplifies Theorem 15.

Observation 1. In the GAP P guaranteed by Theorem 15, without loss of generality we
can assume

Li ≤ n2/d(C)

for all i ∈ [d(C)], where d(C) denotes the dimension of P .

157

Tim Randolph Columbia University

Proof. Suppose Li > n1/d(C) for some i ∈ [d(C)], and let αi := αi(C) be the solution to
Li ≤ nαi/d(C). (Note that αi = OC(1), as |A| = OC(n).)

Let α̂i := αi − ⌊αi⌋ denote the decimal part of αi, and observe that

{yiℓi : ℓi ∈ [Li]} ⊆ (6.2)
{yi,1ℓi,1 + · · ·+ yi,⌊αi⌋ℓi,⌊αi⌋ + yi,⌈αi⌉ℓi,⌈αi⌉ : ∀j ∈ [⌊αi⌋], ℓi,j ∈ [⌈L1/d(C)

i ⌉], ℓi,⌈αi⌉ ∈ [nα̂i/d(C)]};
(6.3)

that is, we can replace one dimension of our arithmetic progression with ⌈αi⌉ new dimensions,
each bounded by n1/d(C). As

vol(P) =
∏

i∈[d]
Li = OC(n)

by Theorem 15, performing this operation for each Li > n1/d(C) results in a new gap P ′ with
dimension d′(C) ≤ 2d(C) and volume OC(n).

6.3 Integer Programming with Constant Doubling
For an integer program, we consider the doubling constant of the column set of the constraint
matrix A as our parameter. This is because the column is the smallest unit affected by each
variable xi when we compute the product Ax⃗; as a result, duplicate columns in A play
a similar role to duplicate elements in a Subset Sum instance, and indeed can often be
eliminated without loss of generality. This formulation allows A to contain duplicate entries
(for example, multiple 0’s and 1’s) as long as all columns are distinct.

Given a matrix A, we use the shorthand

A := A(A) = {A[·, j] | j ∈ [n]}

to denote the set of column vectors of A. Vector set addition (that is, A + A) is defined
in the natural way, using vector instead of integer addition. Formally, our definition of an
integer program with constant doubling is as follows:

Problem 10: C-Integer Linear Programming (ILP) Feasibility

In: An integer linear program specified by an integer matrix A ∈ Zm×n with n distinct
columns and an integer target b⃗ ∈ Zm, such that the column set A := A(A) satisfies
|A+A| ≤ C|A| for a constant C independent of m and n.
Out: A vector x⃗ ∈ Zn

≥0 such that Ax⃗ = b⃗, or ‘No’ if no solution exists.

If each variable xi is constrained to satisfy xi ∈ [ℓi : ui], where ℓi and ui indicate the
lower and upper bounds of a range of valid variable assignments, we refer to the problem

158

Tim Randolph Columbia University

as C-Bounded ILP Feasibility. Further restricting the variables to x⃗ ∈ {0, 1}n yields
C-Binary ILP Feasibility.
Remark 3. Bounded ILPs with n variables and |ℓi|, |ui| = O(poly(n)) for i ∈ [n] can be
converted into equivalent binary ILPs with poly(n) variables by duplicating the columns of
A.

6.3.1 C-Binary ILP Feasibility
Given a constraint matrix with constant doubling, Freiman’s Theorem bounds the number
of possible values for Ax⃗ corresponding to any variable assignment if the variables are binary
or bounded. This allows us to solve the problem efficiently via dynamic programming, and
does not actually require constructing the GAP guaranteed by Freiman’s Theorem.2

Theorem 16. An instance I of C-Binary ILP Feasibility on n variables can be solved in
time nOC(1) · poly(|I|).

Proof. Fix an instance of C-Binary ILP feasibility specified by A ∈ Zm×n and b⃗ ∈ Zm, with
the column set A satisfying |A+A| ≤ C|A|.

Let §(A) denote the list of all (vector) sums that can be attained by adding together
any subset of the columns of A. Equivalently, this is the set of possible outputs Ax⃗ for any
x⃗ ∈ {0, 1}n. Our first goal is to bound |§(A)|.

First, we observe that there exists a GAP P with dimension d(C) and volume v(C)n such
that

A ⊆ P = {x⃗1ℓ1 + x⃗2ℓ2 + · · ·+ x⃗d(C)ℓd(C) : ∀i, ℓi ∈ [Li]},
where x⃗i ∈ Zm for all i ∈ [d(C)]. This is true even though A is a set of integer vectors, as
Freiman’s Theorem holds for torsion-free3 commutative groups ([Ruz09], Theorem 8.1).

Thus §(A) is contained in the GAP

P ′ = {x1ℓ1 + x2ℓ2 + · · ·+ xd(C)ℓd(C) : ∀i, ℓi ∈ [n · Li]},

which implies
|§(A)| ≤ |P ′| ≤ nd(C)|P | = nd(C)v(C)n = nOC(1). (6.4)

To complete the proof, we claim that we can enumerate §(A) efficiently via dynamic
programming, using the following procedure: Initially, we set §(A)1 = A[1, ·]. Then, we
iterate i = 2, 3, . . . , n. In the ith iteration, we construct the sorted list §(A)i, defined as:

§(A)i := §(A)i−1 ∪ {a+ A[i, ·] | a ∈ §(A)i−1}.
2The constructive Freiman’s theorem will be required later, specifically in Lemma 34 and Theorem 18.

The current result emphasizes the usefulness of parameterization in the doubling constant.
3That is, groups in which only the identity element has finite order.

159

Tim Randolph Columbia University

Finally, we return list §(A) = §(A)n. Correctness of the above algorithm follows im-
mediately by construction. For the running time, observe that §(A)i can be constructed in
O(|§(A)i|) time. Because each of the n iterations of the subprocedure takes time O(|§(A)i|) =
O(|§(A)|), the total runtime is, by (6.4), at most n ·O(|§(A)|) = nOC(1).

6.3.2 C-Bounded ILP Feasibility
In general, ILPs with polynomially bounded variables can be converted to ILPs with binary
variables (see Remark 3); however, the straightforward reduction can create many duplicate
columns in the resulting Binary ILP. Although it is possible to get rid of the duplicate
columns, it is easier to extend the previous result to C-Bounded ILP Feasibility directly:

Corollary 10. An instance I of C-Bounded ILP Feasibility such that ℓi ≤ xi ≤ ui and
|ℓi|, |ui| = poly(n) for i ∈ [n] can be solved in time nOC(1) · poly(|I|).

Proof. Modify the proof of Theorem 16 by considering the list §(A)′ of all possible outputs
Ax⃗ for each valid assignment of variables x, using the variable bounds xi ∈ [ℓi : ui] for i ∈ [n]
instead of x ∈ {0, 1}n. As before, we bound |§(A)′|.

Observe that §(A)′ is contained in the GAP P ′′ obtained by scaling each range bound
Li of P by a factor of nO(1), where the hidden constant is determined by the bounds on
the variables. It follows that |§(A)′| = nOC(1). We can enumerate §(A)′ by modifying the
procedure given above so that Step 2 merges a polynomial number of lists, one for each
variable assignment.

6.4 Subset Sum with Constant Doubling
We now consider the useful applications of parameterization in the doubling constant to
Subset Sum. C-Subset Sum is equivalent to C-Binary ILP with a single constraint. As a
result, Theorem 16 yields the following corollary for Subset Sum with n variables:

Corollary 11 (C-Subset Sum is in XP). C-Subset Sum can be solved in time nOC(1).

At this point, it is natural to wonder whether C-Subset Sum can be solved in time
OC(1) · nO(1): that is, whether Subset Sum is in FPT with respect to the doubling constant.
While we cannot yet prove or disprove this statement, we can show that it is equivalent to
an open problem in the parameterized complexity of integer programming. The remainder
of this section proves this reduction in both directions.

160

Tim Randolph Columbia University

6.4.1 Reduction from C-Subset Sum to Hyperplane-Constrained
Binary ILP Feasibility

Recent generalizations of Integer Programming consider the problem of optimizing the value
g(Ax⃗) in place of Ax⃗, where g : Rm → R is a low-dimensional objective function [DLRV23].
The mapping given by Freiman’s Theorem provides a natural reduction from Subset Sum
with constant doubling to a problem of this form. Specifically, C-Subset Sum reduces to a
Binary ILP feasibility problem in which the constraint matrix A has bounded entries and a
feasible solution is any x⃗ satisfying Ax⃗ · s⃗ = t for a specific “step vector” s⃗. Formally, our
problem is as follows:

Problem 11: Hyperplane-Constrained Binary ILP (HBILP) Feasibility

In: An integer matrix A ∈ Zm×n, a step vector s⃗ ∈ Zm, and a target integer t. We let
∆ := ∥A∥∞, the magnitude of A’s largest entry.
Out: A vector x⃗ ∈ {0, 1}n such that Ax⃗ · s⃗ = t, or ‘NO’ if no solution exists.

The reduction from C-Subset Sum to HBILP Feasibility (Lemma 34) is straightforward
but relies crucially on our constructive Freiman’s Theorem.

Lemma 33. For any fixed instance (Z, t) of C-Subset Sum, there exists a HBILP Feasibility
instance given by A ∈ Zd(C)×n, s⃗ ∈ Zd(C), and t for some function d(C) such that the vector
x⃗ ∈ {0, 1}n satisfies

Ax⃗ = t if and only if
∑

i : xi=1
zi = t.

Moreover, ∆ := ∥A∥∞ ≤ n2/d(C), and the reduction can be computed in time ÕC(n) with
success probability 1− n−γ for an arbitrarily small constant γ.

Proof. Fix an instance of C-Subset Sum given by an integer set Z satisfying |Z +Z| ≤ C|Z|
and an integer target t. Apply Theorem 15, which fails with probability n−γ and otherwise
produces a GAP

P = {y1ℓ1 + y2ℓ2 + · · ·+ ydℓd : ∀i, ℓi ∈ [Li]}
of dimension d := d(C) and volume v(C)n containing Z.

For each zi ∈ Z, let v⃗(zi) = (v1, v2, . . . , vd) be an arbitrary d(C)-dimensional integer
vector satisfying

y1v1 + y2v2 + . . . ydvd = zi and ∀i ∈ [d], vi ∈ [Li].

We can think of v⃗(zi) as the d-dimensional “GAP coordinates” of the input element zi. v⃗(zi)
is guaranteed to exist by Freiman’s theorem, and we can recover it in time O(|P |) = OC(n)
via exhaustive search of P . However, v⃗(zi) is not guaranteed to be unique.

161

Tim Randolph Columbia University

To complete the reduction, set

A ∈ Zd(C)×n with ∀j ∈ [n], A[·, j] = v⃗(zj),

set s⃗ := (y1, y2, . . . , yd) and preserve the same target t. Note that ∥A∥∞ ≤ n2/d(C) without
loss of generality by Observation 1.

We claim that for any binary vector x⃗ = (x1, x2, . . . , xn) ∈ {0, 1}n,

Ax⃗ · s⃗ =
∑

i : xi=1
zi. (6.5)

To see this, observe that

Ax⃗ · s⃗ =
∑
i∈[d]

yi

∑
xj=1

A[i, j]

=
∑

xj=1
y1A[1, j] + y2A[2, j] + . . . ydA[d, j]

=
∑

xj=1
y⃗ · v⃗(zj)

=
∑

j : xj=1
zj.

Thus Ax⃗ · s⃗ = t if and only if ∑i : xi=1 zi = t, and there is a one-to-one correspondence
between solutions to our C-Subset Sum instance and our HBILP feasibility instance.

6.4.2 Equivalence Between HBILP Feasibility and Subset Sum
Theorem 17. C-Subset Sum can be solved in time OC(poly(n)) if and only if Hyperplane-
Constrained Binary ILP (HBILP) can be solved in time ∆O(m) · Om(poly(|I|)), where |I| is
the size of the instance.

Theorem 17 follows immediately from the next two lemmas, which show reductions in
both directions. The first is a consequence of the reduction in Section 6.4.1:

Lemma 34. If HBILP Feasibility can be solved in time ∆O(m) ·Om(|I|), then C-Subset Sum
can be solved in time OC(poly(n)) with success probability 1 − n−γ for an arbitrarily large
constant γ > 0.

Proof. Recall that we can preprocess an instance of Subset Sum and produce an equivalent
one such that all integers are bounded by 2O(n) with very high probability (see Lemma 7).
Next, we use the reduction given in Lemma 33, which takes time ÕC(n) and succeeds with
probability 1− n−γ, and solve the resulting HBILP instance in time

∆O(m) ·Om(|I|) = (n2/d(C))O(d(C)) ·OC(poly(n)) = OC(poly(n)).

162

Tim Randolph Columbia University

Lemma 35. If C-Subset Sum admits an OC(poly(n))-time algorithm, HBILP Feasibility can
be solved in time ∆O(m) ·Om(poly(n)).

Proof. Fix an instance of HBILP Feasibility given by the matrix A ∈ Zm×n, the vector
s⃗ ∈ Zm, and the integer target t. Let ∆ := ∥A∥∞.

We perform the reduction in two steps. First, we self-reduce our HBILP instance to
another HBILP instance A′, s⃗′, t′ with the property that every column A′[·, j] of A′ has a
unique dot product A′[·, j] · s⃗′. We then reduce A′, s⃗′, t′ to C-Subset Sum.

If A contains any column with only zeroes, then the value of the corresponding entry of x
does not matter, and we can safely delete it. Thus we can assume without loss of generality
that each column of A has at least one nonzero entry. Moreover, by Observation 2, proved
below, we can assume that each entry of A is non-negative and that any solution vector x⃗
has fixed support exactly q for some q = Θ(n).

Step 1: Self-reduction. In order to construct the instanceA′, s⃗′, t′, defineM := nm∆∥s⃗∥∞+
1, which satisfies

M > Ax⃗ · s⃗ (6.6)
for any x⃗ ∈ {0, 1}n by construction. Moreover, let k := ⌈log∆(n)⌉.

Let R ∈ [∆]k×n be the matrix whose columns are vectors in [0 : ∆−1]k in lexicographically
increasing order. Because the number of such vectors is at least n, every column of R is
different. Recall that Jk×n denotes the k × n matrix containing only 1’s and let R be
∆ · Jk×n −R.

Create the block matrix A′ ∈ Z(m+k)×2n
≥0 as follows. The top-left block is A, the bottom-

left block is R, the bottom-right block is R and each entry in the top-right block is 0. Observe
that every column in Ã is distinct because each column in R is distinct and no column in A
is all 0’s.

Create s⃗′ ∈ Zm+k
≥0 as follows. The first m entries of s⃗′ are s⃗, and the remaining k entries

are the vector v⃗ = (M∆0,M∆1, . . . ,M∆k−1). Finally, set t′ := t + q∆∥v⃗∥1 to complete the
reduction. Pictorally, we can represent A′ and s⃗′ as follows:

A′ :=


A 0

R R

 s⃗′ :=


s⃗

v


Claim 13. For every distinct pair of indices i, j ∈ [2n], A′[·, i] · s⃗′ ̸= A′[·, j] · s⃗′.
Proof: Begin with the first n columns. For all i ∈ [n], we can break down the relevant dot
product into two pieces corresponding to the top and bottom portions of A′:

A′[·, i] · s⃗′ = A[·, i] · s⃗+R[·, i] · v⃗.

163

Tim Randolph Columbia University

First, observe that R[·, i] · v⃗ is distinct for every i ∈ [n] by construction, due to the fact
that each component of R[·, i] is less than ∆, and the components of v increase by factors of
∆.

Second, because
0 < A[·, i] · s⃗ ≤M,

the A[·, i] · s⃗ term of the dot product A′[·, i] · s⃗′ is not large enough to interfere with the
R[·, i] · v⃗ term, and thus the first n columns of A′ have distinct dot products with s′.

Because R = ∆ ·Jk×n−R, and because no column of A consists of all 0’s by assumption,
similar arguments show that the value A′[·, i] · s⃗′ is distinct for every column i ∈ [2n]. ■

Claim 14. The ILP instance (A′, s⃗′, t′) has a solution if and only if the instance (A, s⃗, t)
has a solution (and the solution to A, s⃗, t can be recovered efficiently from the solution of
A′, s⃗′, t′).
Proof: Suppose x⃗ satisfies Ax⃗ · s⃗ = t. Recall that x⃗ has support exactly q by Observation 2
without loss of generality. Thus the vector x⃗′ created by concatenating two copies of x
satisfies

A′x⃗′ · s⃗′ = t+ q∆∥v⃗∥1 = t′.

Moreover, any vector y⃗′ ∈ {0, 1}2n that satisfies A′y⃗′ · s⃗′ = t′ must satisfy

A(y′
1, y

′
2, . . . , y

′
n) · s⃗ = t

by construction. This is because the [R | R] submatrix of A′ can contribute to t′ only in
multiples of M , so because A(y′

1, y
′
2, . . . , y

′
n) · s⃗ < M by (6.6), this product must evaluate to

t. ■

Step 2: Reduction to C-Subset Sum. Consider the integer vector

z⃗ := (s⃗′ · A′[·, 1], s⃗′ · A′[·, 2], . . . , s⃗′ · A′[·, 2n]) (6.7)

and let
Z = {z1, z2, . . . , z2n}

denote the set containing of the components of z⃗. (Note that Z is a proper set and contains
no duplicates, by Claim 13.) We proceed to consider Z, t as an instance of Subset Sum.

Because A′x⃗ · s⃗′ = t′ if and only if x⃗ · z⃗ = t′ by construction (6.7), we have a one-to-one
correspondence between solutions to our Subset Sum and HBILP Feasibility instances: any
subset of Z that adds to t′ corresponds to a binary vector x⃗ ∈ {0, 1}2n such that A′x⃗ · s⃗′ = t′,
which can be used to recover a solution for the original instance A, s⃗, t by Claim 14. It
remains to show that an OC(poly(n)) algorithm for C-Subset Sum will allow us to solve the
problem in the claimed time.

164

Tim Randolph Columbia University

We begin by bounding the doubling constant C of Z. By the definition of z, we have that
zj = s⃗ · A′[·, j] for all j ∈ [n], and thus Z is a subset of the GAP

Y := {y1s1 + y2s2 + · · ·+ ymsm + ym+1M : −∆ ≤ yi ≤ ∆,∀i ∈ [m]; 0 < ym+1 < ∆k−1}.

Note here that the dimension of Y is m+ 1 instead of m+ k, as we have chosen to represent
the component of each zj ∈ Z divisible by M into a single large dimension.

We claim that we can assume
|Z| = Ω(|Y |) (6.8)

without loss of generality. To see this, observe that we can inflate |Z| by adding up to |Y |
dummy elements from the translated GAP t + Y . Because every such element is greater
than t, and each is contained in a translation of Y , we create no additional solutions and
increase |Y + Y | by at most a factor of 2.

We have that

|Z + Z| ≤ |Y + Y |
≤ 2m+1 · |Y |
= Om(1) · |Z|,

where the first line follows from the fact that Z ⊆ Y , the second line follows from the fact
that |Y | has dimension m+ 1, and the third follows from (6.8).

Thus Z, t is an instance of Om(1)-Subset Sum whose solutions correspond directly to
solutions of our original HBILP feasibility instance. Also, |Z| = O(|Y |) = ∆O(m)+k. Because
∆k = O(n) by the definition of k, an algorithm for Subset Sum that runs in time OC(poly(n))
solves Z, t in time Om(poly(∆m · n)) = ∆O(m) ·Om(poly(n)) as claimed.

6.4.3 Non-negativity for HBILP Feasibility
Observation 2. Let I be an instance of HBILP feasibility given by the constraint matrix
A ∈ Zm×n, the step vector s⃗ ∈ Zm, and the target t ∈ Z. Without loss of generality, we can
assume that entries of A are non-negative and that every solution x has fixed support size q
for some q = Θ(n).

Proof. Given an HBILP feasibility instance (A, s⃗, t), we create a new HBILP feasibility
instance (Ã, ˜⃗s, t̃) as follows. Recall that Jm×n denotes the m by n matrix of 1’s and add
∆ · Jm×n to A. Then append the matrix ∆ · Jm×n to the right-hand side A. Finally, add a
row of 1’s to the bottom of the matrix.

Define
M := ∥s⃗∥∞ · 3n∆m,

165

Tim Randolph Columbia University

and note that, by construction, we have

(A+ 2∆Jm×n)x⃗ · s⃗ ≤ 3n∆Jm×1 · s⃗ < M. (6.9)

Create ˜⃗s ∈ Zm+1 by appending M to s⃗, and set t̃ = t + n∆∥s⃗∥1 + nM . Written as block
matrices, we have:

Ã :=


A+ ∆ · Jm×n ∆ · Jm×n

J1×n J1×n

 ˜⃗s :=


s⃗

M


Observe that every entry in Ã is positive and that the maximum entry in Ã is at most

2∆ = O(∆). Because the top m rows of Ã contribute a total value less than M to the dot
product Ãx⃗ · ˜⃗s by (6.9), any solution to (Ã, ˜⃗s, t̃) must have support exactly n so that the
resulting dot product contains the term nM .

It remains to prove correctness:
Claim 15. A vector y⃗ ∈ {0, 1}2n satisfies Ãy⃗ · ˜⃗s = t̃ if and only if supp(y⃗) = n and the first
half of y⃗, the vector y⃗′ = (y1, y2, . . . , yn), satisfies Ay⃗′ · s⃗ = t.
Proof: Suppose some vector y⃗′ ∈ {0, 1}n satisfies Ay⃗′ · s⃗ = t. Then the vector y⃗ created by
adding an arbitrary n-bit string with support n− supp(y⃗′) satisfies

Ãx⃗′ · ˜⃗s = t̃

and is a valid solution to Ã, ˜⃗s, t̃.
Now suppose some vector y⃗ ∈ {0, 1}2n satisfies Ãy⃗ · ˜⃗s = t̃. As previously noted, we

must have supp(y⃗) = n to create the nM term in the product Ãy⃗ · ˜⃗s. The additional ∆
factors added to every component in each of the first m rows of Ã create the n∆||s⃗||1 term
in the product. If we remove these two terms, the remainder of the equation Ãy⃗ · ˜⃗s = t̃ is
A(y′

1, y
′
2, . . . , y

′
n) · s⃗ = t. ■

This concludes the proof of Observation 2.

Reduction from BILP Feasibility to HBILP Feasibility

An FPT algorithm for C-Subset Sum further implies a ∆O(m) · Om(poly(n)) algorithm for
Bounded ILP feasibility, i.e., an extension of Eisenbrand and Weismantel’s improvement for
Unbounded ILPs to determining feasibility for Bounded ILPs.

Corollary 12. If C-Subset Sum can be solved in OC(poly(n)), then Bounded ILPs defined by
A ∈ Zm×n, b⃗ ∈ Zm with ∆ := ∥A∥∞ and each variable xi bounded by poly(n) can be solved
in time ∆O(m) ·Om(poly(n)).

166

Tim Randolph Columbia University

Corollary 12 is a straightforward corollary of Lemma 36, which reduces ILP Feasibility
with binary variables to HBILP feasibility, and the fact that ILPs with polynomially bounded
variables can be reduced to binary ILPs (Remark 3).
Lemma 36. If HBILP Feasibility can be solved in time ∆O(m) ·Om(|I|), Binary ILP Feasi-
bility can be solved in time ∆O(m) ·Om(|I|).

Proof. Fix an instance A ∈ Zm×n, b⃗ ∈ Zn of Binary ILP Feasibility with ∆ := ∥A∥∞. By
Observation 3, proved below, we can assume without loss of generality that the entries of A
are non-negative.

Define q := q(n,∆) = n∆ + 1 and create a new instance (A, s⃗, t) of HBILP feasibility by
setting

s⃗ := (q0, q1, . . . , qm−1) and
t := b⃗ · s⃗ = b⃗1 · q0 + b⃗2 · q1 + · · ·+ b⃗m · qm−1,

effectively using t to store m registers of log2(q) = log2(n∆ + 1) bits each.
We claim that x⃗ ∈ {0, 1}n solves A, b⃗ if and only if it solves (A, s⃗, t). If Ax⃗ = b⃗, Ax⃗ · s⃗ = t

follows immediately from the definition of t.
Now suppose Ax⃗ · s⃗ = t. Because q > A[i, ·]x⃗ for any row i ∈ [m] by construction, the

only way to achieve t is if A[i, ·]x⃗ = bi for each i ∈ [m].
Observation 3. Let I be an instance of ILP feasibility with binary variables given by the
constraint matrix A ∈ Zm×n and the target vector b⃗ ∈ Zm. Without loss of generality, we
can assume that entries of A are non-negative and that every solution has fixed support q
for some q = Θ(n).
Proof. Construct a new constraint matrix Ã as follows: Recall that Jm×n denotes the m by
n matrix of 1’s, and add ∆ ·Jm×n to the matrix A. Then we append an additional n columns
to A, where each column consists only of ∆ entries only. Finally, we append a row of 1’s.

To create ˜⃗b, add n∆ · Jm×1 to b⃗ and append a single entry with the value n.

Ã :=


A+ ∆ · Jm×n ∆ · Jm×n

J1×n J1×n

 b̃ :=


b⃗+ n∆ · Jm×1

n


Observe that every entry in Ã is positive and that the maximum entry in Ã is at most

2∆ = O(∆). For correctness, note that the last row ensures that any solution to Ãx⃗ = ˜⃗
b

with x⃗ ∈ {0, 1}2n has support exactly n. This implies that the additional ∆ factors added
to every component in each of the first m rows add a total of n∆ to each component of Ax⃗.
Thus Ãx⃗ = ˜⃗

b if and only if Ax⃗ = b⃗.

167

Tim Randolph Columbia University

6.5 Unbounded Subset Sum with Constant Doubling
C-Unbounded Subset Sum is equivalent to an unbounded integer program with a single
constraint. In this section, we prove a near-XP algorithm for C-Unbounded Subset Sum by
first using the constructive Freiman’s theorem to map instances to integer programs with
small coefficients, then using existing methods to find small-support solutions to the integer
programs.

The following lemma, which proves that feasible ILP instances with bounded entries ad-
mit solutions with small support, follows a standard pattern of argument (see, e.g., [Gom69]
Theorem 1, adapted in [Kle22] Corollary 2.1).

Lemma 37 (ILP Solutions with small support). Let A ∈ Zm×n with ∆ := ∥A∥∞. In
(n∆)O(m) time we can find a set X ⊆ {0, 1}n with the following property: For any target
vector b⃗ ∈ Zm corresponding to at least one solution x⃗ ∈ Zn

≥0 with Ax⃗ = b⃗, there exists a
small-support solution y⃗ ∈ Zn

≥0 satisfying

Ay⃗ = b⃗, supp(y⃗) ∈ X and |supp(y⃗)| ≤ m log2(2n∆ + 1).

Proof. We begin with a bound on the support of lexicographically minimal solutions that
follows standard arguments.
Claim 16. Let A ∈ Zm×n with ∆ = ∥A∥∞, and let y⃗ ∈ Zn

≥0 be the lexicographically minimal
vector such that Ay⃗ = b⃗ for some b⃗ ∈ Zm. Then |supp(y⃗)| ≤ m log2(2n∆ + 1).
Proof: Assume for contradiction that

2|supp(y)| > (2n∆ + 1)m.

Because Ax⃗ ≤ (2n∆ + 1)m for any x⃗ ∈ {0, 1}n, there must exist two different vectors
v⃗, w⃗ ∈ {0, 1}n such that (i) supp(v⃗), supp(w⃗) ⊆ supp(y⃗), and (ii) Av⃗ = Aw⃗, by the pigeonhole
principle.

Let y⃗1 = y⃗− w⃗+ v⃗ and y⃗2 = y⃗+ w⃗− v⃗. Observe that Ay⃗1 = Ay⃗2 and y⃗1, y⃗2 ∈ Zn
≥0 because

supp(v⃗), supp(w⃗) ⊆ supp(y⃗). Moreover, because v⃗ ̸= w⃗ we have that one of y⃗1 or y⃗2 is
lexicographically smaller than y⃗, which contradicts the assumption that y⃗ is lexicographically
minimal. ■

Let X ⊆ {0, 1}n be the set of lexicographically minimal solutions to Ax⃗ = b⃗ for every
b⃗ ∈ Zn

≥0 with ∥⃗b∥∞ < n∆. Clearly, |X | ≤ (2n∆ + 1)m as this is the number of suitable
b⃗’s. To construct X it remains to iterate over every b⃗ ∈ Zn

≥0 with ∥⃗b∥∞ < n∆ and solve the
following Integer Linear Program:

max
{

n∑
i=1

xi ·M i | Ax⃗ = b⃗, x⃗ ∈ Zn
≥0

}
,

168

Tim Randolph Columbia University

where M = 4n∆. Note that this can be solved in (n∆)O(m) time by [EW19, Theorem 2.3]
for each b⃗. Hence, the set X can be constructed in the claimed time. Finally, it remains to
show that for any feasible b⃗, there exists a solution y⃗ with small support in X .
Claim 17. Let b⃗ ∈ Zm be any vector for which there exists x⃗ ∈ Zn

≥0 with Ax⃗ = b⃗. Then
there also exists y⃗ ∈ Zn

≥0 such that Ay⃗ = b⃗ and supp(y⃗) ∈ X .

Proof: Let z⃗ ∈ Zn
≥0 be the lexicographically minimum vector such that Az⃗ = b⃗. Let ̂⃗z ∈

{0, 1}n be such that ẑi = 1 iff zi ̸= 0 and ẑi = 0 otherwise. Let ̂⃗b be such that Â⃗z = ̂⃗
b.

Observe that ∥̂⃗b∥∞ < n∆.
Hence it remains to show that ̂⃗z is the lexicographically minimal vector for which Â⃗z = ̂⃗

b.
Assume for contradiction that there exists ̂⃗y ∈ Zn

≥0 such that Â⃗y = ̂⃗
b and ̂⃗y is lexicograph-

ically smaller than ̂⃗z. Consider a vector y⃗ = z⃗ − ̂⃗z + ̂⃗y. Note, that supp(̂⃗z) ⊆ supp(z⃗) so
y⃗ ∈ Zn

≥0. Clearly Ay⃗ = Az⃗ = b⃗. Moreover, because ̂⃗y is lexicographically smaller than ̂⃗z, it
follows that y⃗ is lexicographically smaller than z⃗. This contradicts our assumption that z⃗ is
lexicographically minimal. ■

Thus the set X satisfies the property stated in Lemma 37, concluding the proof.

With Lemma 37 in hand, let us present our algorithm for C-Unbounded Subset Sum.

Theorem 18 (Near-XP algorithm for C-Unbounded Subset Sum). C-Unbounded Subset Sum
can be solved in time nOC(1) if an ILP instance I on v variables can be solved in time
2O(v)poly(|I|).

Using the current best algorithm [RR23], C-Unbounded Subset Sum can be solved in
nOC(1) log log log(n) time.

Proof. Following the steps of our reduction from C-Subset Sum to HBILP feasibility (Lemma 33),
we can use the constructive Freiman’s theorem (Theorem 14) to encode the C-Unbounded
Subset Sum instance as an Unbounded Hyperplane-Constrained ILP Feasibility instance
given by A ∈ Zd(C)×n

≥0 with ∆ = ∥A∥∞ = nO(1/d(C)), step vector ℓ⃗, and target t.
We then use Lemma 37 to construct a set X of candidate supports in (n∆)O(m) = nOC(1)

time. For each support vector x⃗∗ ∈ X , we reduce the ILP to variables in x⃗∗. This gives us a
program with |x⃗∗| = O(m log2(n∆)) = OC(log(n)) variables. Now, we encode this problem
as the ILP x⃗ ∈ Zn

≥0

∣∣∣∣∣∣
d∑

j=1
ℓj

∑
i∈x⃗∗

A[i, j]xi = t

 .
Observe that this is equivalent to an instance of Unbounded Subset Sum with OC(log(n))

items. Thus any algorithm for Unbounded Subset Sum (or, more generally, any algorithm for
unbounded ILP) that runs in time 2O(v) on instances with v variables would automatically

169

Tim Randolph Columbia University

yield an nOC(1) time algorithm for C-Unbounded Subset Sum. Using the best known algorithm
for unbounded ILPs, which runs in time (log v)O(v) [RR23], we get an nOC(1) log log log(n)-time
algorithm.

6.6 k-SUM with Constant Doubling
Our next contribution concerns (C, k)-SUM. We prove Theorem 19 and observe that the same
approach gives an algorithm for 4-SUM that is tight up to subpolynomial factors, assuming
the k-SUM conjecture.

We note that [ABF23] and [JX23] also present algorithms for 3-SUM in cases where
additive structure in the input is controlled by the doubling constant, and also make use of
fast algorithms for sparse convolution. In both cases, these authors focus on the setting of
tripartite 3-SUM under the condition that at least one of the three input sets A, B, and C
is guaranteed to have small doubling.

Theorem 19. Given an integer set X such that |X +X| ≤ C · |X| and an integer t, we can
decide if there exists a set {x1, . . . , xk} ⊆ X such that x1 + . . .+xk = t in deterministic time
Õ(C⌈k/2⌉ · 2O(k) · n).

Proof. Let X be an integer set of size n, and let {x1, . . . , xk} ⊆ X denote a set of k integers
that sum to t. We make use of the sparse convolution algorithm of Bringmann et al. [BFN22].
Lemma 38 (Theorem 1 in [BFN22]). Given two sets A,B ⊆ [∆], the set A+B := {a+ b |
a ∈ A, b ∈ B} can be constructed deterministically in Õ(|A+B| · polylog(∆)) time.

We use Lemma 38 to enumerate two sets:

L := X + . . .+X︸ ︷︷ ︸
⌊k/2⌋

and R := X + . . .+X︸ ︷︷ ︸
k−⌊k/2⌋

.

Both L and R can be computed deterministically in Õ(k · (|L|+ |R|)) time by repeatedly
applying Lemma 38. Next, with both L and R in hand, we sort the sets by value and apply
Meet-in-the-Middle (Algorithm 1.1) to recover a solution in time Õk(|L|+ |R|) if one exists.
Finally, if for at least one a ∈ L we find an accompanying element in R, we know that the
instance has a solution.

As stated, the algorithm decides k-SUM without recovering a solution. However, given
that a solution exists we can recover a solution via binary search at the cost of an additional
Ok(log(n)) factor. This concludes the description of the algorithm.

Correctness of the algorithm follows from the definition of the sets L and R. It remains
to bound the runtime. Since the other steps of the algorithm take time Õk(n), the bottleneck

170

Tim Randolph Columbia University

occurs in the Meet-in-the-Middle step, which takes time Õk(|L|+ |R|). Therefore it remains
to bound the sizes of L and R. Without loss of generality, consider |R|, and observe

|R| = |X + . . .+X︸ ︷︷ ︸
k−⌊k/2⌋

| ≤ |⌈k/2⌉X| = C⌈k/2⌉|X|,

where the final step applies Plünnecke-Ruzsa (Lemma 28). This concludes the proof of The-
orem 19.

In the specific case of k = 4, using the doubling constant directly gives a slightly better
bound. The resulting algorithm for (C, 4)-SUM is optimal up to subpolynomial factors under
the 4-SUM conjecture.

Corollary 13. (C, 4)-SUM can be solved in expected time Õ(Cn). Moreover, for any constant
ε > 0, (C, 4)-SUM cannot be solved in O((Cn)1−ε) time unless 4-SUM can be solved in time
O(n2−ε) for ε > 0.

Proof. The upper bound follows by analysis of the proof of Theorem 19. Recall that the
bottleneck is determined by |L|+ |R|, which in the case when k = 4 is |X +X| ≤ C · |X|.

For the lower bound, observe that |X + X| ≤ |X|2 and therefore C ≤ |X|. Thus, any
algorithm for (C, 4)-SUM with runtime O((Cn)1−ε) would yield an algorithm for 4-SUM that
runs in O(n2−ε) time.

Remark 4. Applying the same lower bound argument to the more general case of k-SUM
gives a lower bound of Ω(C⌈k/2⌉−1n) for (C, k)-SUM under the k-SUM conjecture, leaving an
O(C)-factor gap.

In [Pet11], Petridis gives the slightly improved bound

|hA| = O(Ch−1|A|2− 2
h),

for finite sets in commutative groups, improving on Plünnecke-Ruzsa. This narrows the gap
between our upper and lower bounds slightly, although the result is still not tight for k > 4.
Further improvements, either by non-trivially leveraging the small doubling constant of the
input set to achieve a better algorithmic result for large k or by improving on Plünnecke-
Ruzsa, would be both interesting and surprising.

171

Chapter 7

Future Work

What comes next for the Subset Sum problem? In this brief concluding chapter, we review
what is known and offer some ideas for future work related to the topics considered in this
thesis.

7.1 The Meet-in-the-Middle Barrier, Reconsidered
The most significant open problem remains to break the Meet-in-the-Middle barrier.

Question 4. Can (Vanilla) Subset Sum be solved in time O(2(0.5−ε)n) for any constant ε > 0?

Informed opinion seems optimistic on this question. Referring to recent advancements,
Abboud, Bringmann, Hermelin and Shabtay commented in 2022, “All this progress leads
to the feeling that a positive resolution to [Question 4] might be just around the corner”
[ABHS22]. As such, it might be more appropriate to restate the open question as a conjec-
ture:

Conjecture 1 (Meet-in-the-Middle Conjecture). There exists a constant ε > 0 such that
(Vanilla) Subset Sum can be solved in time O(2(0.5−ε)n).

Improvements on certain existing algorithms would imply the conjecture. For example, in
[NW21], Nederlof and Węgrzycki show that any improvement on their algorithm for Weighted
Orthogonal Vectors would imply Conjecture 1, as would improvement on a certain node-
weighted graph problem. Likewise, “color-coding” reductions from Subset Sum to k-SUM
imply that an nk/2−ε algorithm achieved for any k would also prove the Meet-in-the-Middle
Conjecture. Other results implying Conjecture 1 are more simply stated as results for large
classes of Subset Sum instances; see below.

The following subsections review the classes of worst-case Subset Sum instances that can
be solved in time 2(0.5−ε)n, leaving us with a stubborn core of instances that appear (for now)

172

Tim Randolph Columbia University

to be harder. Two papers by Austrin, Kaski, Koivisto, and Nederlof [AKKN15, AKKN16]
contributed significantly to this way of thinking about the problem, and are cited repeatedly
below.

7.1.1 Unbalanced Subset Sum Instances
Recall that a Subset Sum instance (X, t) is unbalanced if it or its complement (X,Σ(X)− t)
admits a solution of size at most αn for some constant α < 0.5. Such an instance can be
solved deterministically in time

O∗
(
2H(α)n/2

)
= 2(0.5−Ω(1))n

by Lemma 5.

7.1.2 Random-Like Instances.
As previously noted in Chapter 4, an algorithm for average-case Subset Sum that solves the
problem with high probability over the draw of a random input is equivalent to an algorithm
that solves most worst-case Subset Sum instances.

It is technically correct to say that the apparently difficult set of Subset Sum instances
is a subset of those instances on which the Representation Method fails. However, in order
for this classification to be helpful, we must exploit some useful property that they have
in common. Theorem 6, interpreted as a statement of this type, effectively says that the
hard instances of Subset Sum either have a small Equal Subset Sum solution or construct
an Equal Subset Sum solution while executing the Representation Method. However, this is
only directly helpful if we are interested in obtaining solutions to Equal Subset Sum, as in
Either-Or Subset Sum.

The two crucial conditions for the Representation Method are that

• partial candidate solutions fall into many residue classes (so that choosing a few residue
classes recovers a solution with high probability) and

• the number of pseudosolutions, pairs of partial candidate solutions which add to the
target but cannot be combined to create a solution (usually, because of overlapping
elements) is not large enough to spoil the runtime of the algorithm.

(See Section 1.1.2 for background on the representation method, and refer to Algorithm 3.9,
Algorithm 4.2, and Algorithm 5.2 for three ways in which the problems of solution distribu-
tion and pseudosolutions can be overcome.)

The following instance types are known to have properties that allow Representation
Method-style approaches to succeed:

173

Tim Randolph Columbia University

Instances With No Very Frequent Sums. Given a Subset Sum instance (X, t), let βs

denote the bin size of the sum s:

βs(X) := |{Y ⊆ X | Σ(Y) = s},

and let β denote the maximum bin size:

β := max
s
βs.

Subset Sum instances in which β = 2(0.5−Ω(1))n can be solved in time 2(0.5−Ω(1))n [AKKN16].

Instances with Many Sums. A corollary to Lemma 1.3 of [AKKN16] is that instances
with many distinct Subset Sums (§(X) ≥ 20.997n) can be solved in time 2(0.5−Ω(1))n. This fol-
lows from an information-theoretic argument which proves that the former condition implies
β < 20.4996n.

7.1.3 Structured Instances
Certain properties related to additive structure are also sufficient to allow Subset Sum in-
stances to be solved in time faster than 2n/2. Constant doubling (or extremely small
doubling), explored in Chapter 6, is one of these. Others include the following:

Instances with Structured Subsets. If the algorithm can identify a small subset with
few subset sums, it can exploit this directly to speed up Meet-in-the-Middle. Specifically,
given a set Y ⊆ X of cardinality at most αn for some α < 0.5 and with §(Y) = 2(1−Ω(1))n,
Subset Sum can be solved in time 2(0.5−Ω(1))n by [AKKN16], Lemma 3.2. (Lemma 6, a version
of the same lemma that achieves a polynomial-time speedup, is used in Chapter 5.)

Duplicate Elements and C-Collisions. Duplicate elements and small sets with equal
sums tend to make Subset Sum easier: for example, if for some element s the multiset
{s, s, s} ⊆ X, we can replace the subset {s, s, s} with {s, 2s} to shrink the instance without
changing §(X).

More generally, for any constant C ∈ Z≥0, we can shrink the instance using the following
procedure:

1. Enumerate all sums of at most C elements of X in time O(nC).

2. If two sets of size at most C have the same sum, there exists a subset Y ⊆ X with
|Y | ≤ 2C and |§(Y)| ≤ 2|Y | − 1. Replace (X, t) with the instance family

XY := {(X \ Y, t− y) | y ∈ §(Y)}.

(X, t) has a solution if and only if at least one instance in XY has a solution.

174

Tim Randolph Columbia University

Repeat this procedure until no C-collisions exist. Two outcomes are possible. In the
first, we repeat the procedure o(n) times; in this case, we are left with a set family of size
(22C − 1)o(n) = 2o(n) and an instance of size n − o(n) with no C-collisions. By Instance
Splitting and the assumption, without loss of generality, of one-sided error, this is no harder
than the original problem (Section 2.3.1).

On the other hand, if we repeat the procedure Ω(n) times, we can obtain a structured
subset. Because each removed subset Y satisfies |§(Y)| ≤ 2|Y | − 1, we can take the union of
Θ(n) such subsets to create a new set Z with |Z| = Ω(n), |Z| ≤ 0.5n, and |§(Z)| = 2(1−Ω(1))|Z|.
Z is a structured subset in the sense of the previous subheading, so we can exploit it to solve
the instance in time 2(0.5−Ω(1))n.

Instances With One Very Frequent Sum. [AKKN16] also demonstrates that Subset
Sum instances in which β > 20.661n can be solved in time 2(0.5−Ω(1))n.

Reviewing the tractable cases above suggests the conclusion that to break the Meet-
in-the-Middle barrier, we need a better understanding of additive structure in the regime
in which |§(Y)| = 2αn for constants α < 1, independent of n. Unfortunately, most exist-
ing results for problems of this type apply only to sets with much stronger guarantees of
additive structure, about which we can draw more precise structural inferences (see, e.g.,
Section 1.1.3). In our regime, the problem appears difficult even to experts. For example,
Tao observes, “The study of sets with close to maximal doubling appears to be hopeless at
present” ([TV06], Section 2.2).

In other words, if we are to prove Conjecture 1, we may have to do so without strong
statements about sets with “intermediate additive structure”. However, even in the absence
of such helpful tools, several promising avenues remain open:

1. Reducing Subset Sum to other algorithmic problems or primitives that admit surpris-
ingly fast algorithms. Algorithms that made creative use of fast matrix multiplication
or the fast Fourier transform would be examples of this approach.

2. Progress on existing problems already used as ingredients in fast algorithms for Subset
Sum, for example, Orthogonal Vectors or k-SUM.

3. Results that exploit aspects of additive structure specific to hard instances of Subset
Sum. Such an approach might use information-theoretic or other arguments, even
roughly, to infer better information about the occurrence of pseudosolutions when
average-case approaches are applied to hard Subset Sum instances.

4. Finally, perhaps most frustratingly and most tantalizingly, there remains the possibility
of achieving exponentially faster algorithms for Subset Sum using only elementary
methods. At present, the best “evidence” against such a breakthrough is only that
many previous attempts have failed.

175

Tim Randolph Columbia University

7.2 Open Questions from This Thesis
Of course, breaking the Meet-in-the-Middle barrier is far from the only open problem in the
area of Subset Sum problems. Other related problems are interesting in their own right—and
could, of course, lead indirectly to progress on Conjecture 1. Those most closely related to
the topics in this thesis include:

1. Breaking the Meet-in-the-Middle Barrier on Other Coefficient Sets. Given
[MNPW19]’s result for Equal Subset Sum, it is natural to wonder whether there ex-
ist faster algorithms for GSS on other coefficient sets. There do not appear to be
fundamental obstacles preventing the previous approach from being generalized to
C = [d : d], but the simplest arguments of this type are slightly too weak to break
the Meet-in-the-Middle barrier. We are optimistic that a careful application of the
representation method could result in |C|(1/2−Ωd(1))n-time algorithms for all coefficient
sets of the form C = [−d : d], if not C = [±d]. This could help address the question of
which variant of the Meet-in-the-Middle barrier is truly “natural” for GSS.

2. Decision Either-Or Subset Sum. It is unclear whether the decision variant of the
Either-Or Subset Sum problem is easier than the search problem. If an algorithm
for EOSS is required only to give a single Yes/No answer for either Subset Sum or
Equal Subset Sum, without producing a solution, can this problem be solved as fast
as average-case Vanilla Subset Sum?

3. Further Applications of Additive Structure. The largest open question from
Chapter 6 is whether Subset Sum is FPT in the doubling constant. It would also be
interesting to develop an algorithm for Integer Programming with unbounded variables
parameterized in the doubling constant, effectively combining our progress on Bounded
ILP feasibility and Unbounded Subset Sum. We suspect such a result could be derived
from a constructive Freiman’s theorem for torsion-free commutative groups, or simply
for integer vectors of constant dimension.

176

References

[ABF23] Amir Abboud, Karl Bringmann, and Nick Fischer. Stronger 3-SUM Lower
Bounds for Approximate Distance Oracles Via Additive Combinatorics. In Pro-
ceedings of the 55th Annual ACM Symposium on Theory of Computing, pages
391–404, 2023.

[ABHS22] Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-
Based Lower Bounds for Subset Sum and Bicriteria Path. ACM Transactions
on Algorithms (TALG), 18(1):1–22, 2022.

[Agr04] Agrawal, Manindra and Kayal, Neeraj and Saxena, Nitin. PRIMES is in P.
Annals of Mathematics, pages 781–793, 2004.

[AKKM13] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jussi Määttä. Space–Time
Tradeoffs for Subset Sum: An Improved Worst Case Algorithm. In International
Colloquium on Automata, Languages, and Programming (ICALP), pages 45–56.
Springer, 2013.

[AKKN15] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Subset Sum in
the Absence of Concentration. In 32nd International Symposium on Theoretical
Aspects of Computer Science (STACS 2015). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2015.

[AKKN16] Per Austrin, Mikko Koivisto, Petteri Kaski, and Jesper Nederlof. Dense Subset
Sum May Be the Hardest. 33rd Symposium on Theoretical Aspects of Computer
Science (STACS 2016), pages 13:1–13:14, 2016.

[BBSS20] Xavier Bonnetain, Rémi Bricout, André Schrottenloher, and Yixin Shen. Im-
proved Classical and Quantum Algorithms for Subset-Sum. In International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, pages 633–666. Springer, 2020.

177

Tim Randolph Columbia University

[BCJ11] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. Improved Generic Algo-
rithms for Hard Knapsacks. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 364–385. Springer, 2011.

[BCP01] Christian Borgs, Jennifer Chayes, and Boris Pittel. Phase Transition and Finite-
Size Scaling for the Integer Partitioning Problem. Random Structures & Algo-
rithms, 19(3-4):247–288, 2001.

[BDP05] Ilya Baran, Erik D Demaine, and Mihai Patraşcu. Subquadratic Algorithms
for 3SUM. In Workshop on Algorithms and Data Structures, pages 409–421.
Springer, 2005.

[Bel66] Richard Bellman. Dynamic Programming. Science, 153(3731):34–37, 1966.

[BFN22] Karl Bringmann, Nick Fischer, and Vasileios Nakos. Deterministic and Las
Vegas Algorithms for Sparse Nonnegative Convolution. In Proceedings of the
2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
3069–3090. SIAM, 2022.

[BGNV18] Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and Nikhil Vyas. Faster Space-
Efficient Algorithms for Subset Sum, k-SUM, and Related Problems. SIAM J.
Comput., 47(5):1755–1777, 2018.

[Bib13] Khodakhast Bibak. Additive Combinatorics: With a View Towards Computer
Science and Cryptography—An Exposition. In Jonathan M. Borwein, Igor Sh-
parlinski, and Wadim Zudilin, editors, Number Theory and Related Fields, pages
99–128. Springer, 2013.

[Böh11] E. Böhme. Verbesserte Subset-Sum Algorithmen, 2011.

[Bri17] Karl Bringmann. A Near-Linear Pseudopolynomial Time Algorithm for Subset
Sum. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1073–1084. SIAM, 2017.

[Bri23] Karl Bringmann. Knapsack with Small Items in Near-Quadratic Time.
arXiv:2308.03075, 2023.

[BW21] Karl Bringmann and Philip Wellnitz. On Near-Linear-Time Algorithms for
Dense Subset Sum. In Proceedings of the 2021 ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 1777–1796. SIAM, 2021.

178

Tim Randolph Columbia University

[CCM11] Seok-Ho Chang, Pamela C. Cosman, and Laurence B Milstein. Chernoff-Type
Bounds for the Gaussian Error Function. IEEE Transactions on Communica-
tions, 59(11):2939–2944, 2011.

[CFG89] Mark Chaimovich, Gregory Freiman, and Zvi Galil. Solving Dense Subset-
Sum Problems by Using Analytical Number Theory. Journal of Complexity,
5(3):271–282, 1989.

[CFJ+14] Marek Cygan, Fedor Fomin, Bart M.P. Jansen, Lukasz Kowalik, Daniel
Lokshtanov, Daniel Marx, Marcin Pilipczuk, Michal Pilipczuk, and
Saket Saurabh. Open Problems for FPT School. Available at
https://fptschool.mimuw.edu.pl/opl.pdf, 2014.

[CFK+15] Marek Cygan, Fedor V Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel
Marx, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized
Algorithms, volume 5.4. Springer, 2015.

[Cha02] Mei-Chu Chang. A Polynomial Bound in Freiman’s Theorem. Duke Math. J.,
115(1):399–419, 2002.

[Cha19] Timothy M Chan. More Logarithmic-Factor Speedups for 3SUM, (median,+)-
Convolution, and Some Geometric 3SUM-Hard Problems. ACM Transactions
on Algorithms (TALG), 16(1):1–23, 2019.

[CIP09] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The Complexity
of Satisfiability of Small Depth Circuits. In International Workshop on Param-
eterized and Exact Computation, pages 75–85. Springer, 2009.

[CJRS22] Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A Servedio. Average-Case
Subset Balancing Problems. In Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 743–778. SIAM, 2022.

[CJRS23] Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio. Subset Sum in
Time 2n/2/poly(n). In 27th International Conference on Randomization and
Computation (RANDOM/APPROX), 2023.

[CL15] Timothy M Chan and Moshe Lewenstein. Clustered Integer 3SUM Via Additive
Combinatorics. In Proceedings of the Forty-Seventh Annual ACM Symposium
on the Theory of Computing (STOC 2015), pages 31–40, 2015.

179

https://fptschool.mimuw.edu.pl/opl.pdf

Tim Randolph Columbia University

[CLMZ24] Lin Chen, Jiayi Lian, Yuchen Mao, and Guochuan Zhang. Faster Algorithms
for Bounded Knapsack and Bounded Subset Sum via Fine-Grained Proximity
Results. In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 4828–4848. SIAM, 2024.

[CWX22] Timothy M. Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Hardness for
Triangle Problems Under Even More Believable Hypotheses: Reductions From
Real APSP, Real 3SUM, and OV. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2022, page 1501–1514,
New York, NY, USA, 2022. Association for Computing Machinery.

[DDKS12] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient Dissection
of Composite Problems, with Applications to Cryptanalysis, Knapsacks, and
Combinatorial Search Problems. In Annual Cryptology Conference, pages 719–
740. Springer, 2012.

[DF12] Rodney G Downey and Michael Ralph Fellows. Parameterized Complexity.
Springer Science & Business Media, 2012.

[DGIM02] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintain-
ing Stream Statistics Over Sliding Windows. SIAM Journal on Computing,
31(6):1794–1813, 2002.

[DHKP97] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti Pentto-
nen. A Reliable Randomized Algorithm for the Closest-Pair Problem. Journal
of Algorithms, 25(1):19–51, 1997.

[DLRV23] Daniel Dadush, Arthur Léonard, Lars Rohwedder, and José Verschae. Opti-
mizing Low Dimensional Functions over the Integers. In International Confer-
ence on Integer Programming and Combinatorial Optimization, pages 115–126.
Springer, 2023.

[EW19] Friedrich Eisenbrand and Robert Weismantel. Proximity Results and Faster
Algorithms for Integer Programming Using the Steinitz Lemma. ACM Trans-
actions on Algorithms (TALG), 16(1):1–14, 2019.

[FKP23] Nick Fischer, Piotr Kaliciak, and Adam Polak. Deterministic 3SUM-Hardness.
In Information Technology Convergence and Services, 2023.

[Fre64] Gregory A Freiman. On the Addition of Finite Sets. In Doklady Akademii Nauk,

180

Tim Randolph Columbia University

volume 158.5, pages 1038–1041. Russian Academy of Sciences, 1964.

[Fre17] Ari Freund. Improved Subquadratic 3SUM. Algorithmica, 77:440–458, 2017.

[GM91] Zvi Galil and Oded Margalit. An Almost Linear-Time Algorithm for the Dense
Subset-Sum Problem. SIAM Journal on Computing, 20(6):1157–1189, 1991.

[GO95] Anka Gajentaan and Mark H Overmars. On a Class of O(n2) Problems in
Computational Geometry. Computational Geometry, 5(3):165–185, 1995.

[Gom69] Ralph E Gomory. Some Polyhedra Related to Combinatorial Problems. Linear
Algebra and Its Applications, 2(4):451–558, 1969.

[GP18] Allan Grønlund and Seth Pettie. Threesomes, Degenerates, and Love Triangles.
J. ACM, 65(4):22:1–22:25, 2018.

[GS15] Omer Gold and Micha Sharir. Improved Bounds for 3SUM, K-SUM, and Linear
Degeneracy. In Embedded Systems and Applications, 2015.

[HGJ10] Nick Howgrave-Graham and Antoine Joux. New Generic Algorithms for Hard
Knapsacks. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 235–256. Springer, 2010.

[HS74] Ellis Horowitz and Sartaj Sahni. Computing Partitions with Applications to the
Knapsack Problem. Journal of the ACM (JACM), 21(2):277–292, 1974.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT.
Journal of Computer and System Sciences, 62(2):367–375, 2001.

[JR18] Klaus Jansen and Lars Rohwedder. On Integer Programming and Convolution.
In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[JX23] Ce Jin and Yinzhan Xu. Removing Additive Structure in 3SUM-Based Re-
ductions. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, pages 405–418, 2023.

[Kar72] Richard M. Karp. Reducibility Among Combinatorial Problems, pages 85–103.
Springer US, Boston, MA, 1972.

181

Tim Randolph Columbia University

[KK82] Narendra Karmarkar and Richard M Karp. The Differencing Method of Set Par-
titioning. Computer Science Division (EECS), University of California Berkeley,
1982.

[Kle22] Kim-Manuel Klein. On the Fine-Grained Complexity of the Unbounded Subset-
Sum and the Frobenius Problem. In Proceedings of the 2022 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 3567–3582. SIAM, 2022.

[KLM19] Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-Optimal Linear De-
cision trees for k-SUM and Related Problems. Journal of the ACM (JACM),
66(3):1–18, 2019.

[KPW20] Dušan Knop, Michał Pilipczuk, and Marcin Wrochna. Tight Complexity Lower
Bounds for Integer Linear Programming with Few Constraints. ACM Transac-
tions on Computation Theory (TOCT), 12(3):1–19, 2020.

[KX19] Konstantinos Koiliaris and Chao Xu. Faster Pseudopolynomial Time Algorithms
for Subset Sum. ACM Transactions on Algorithms (TALG), 15(3):1–20, 2019.

[Lov17] Shachar Lovett. Additive Combinatorics and Its Applications in Theoretical
Computer Science. Number 8 in Graduate Surveys. Theory of Computing Li-
brary, 2017.

[Lue98] George S Lueker. Exponentially Small Bounds on the Expected Optimum of
the Partition and Subset Sum Problems. Random Structures & Algorithms,
12(1):51–62, 1998.

[MNPW19] Marcin Mucha, Jesper Nederlof, Jakub Pawlewicz, and Karol Wegrzycki. Equal-
Subset-Sum Faster Than Meet-in-the-Middle. In Michael A. Bender, Ola Svens-
son, and Grzegorz Herman, editors, 27th Annual European Symposium on Algo-
rithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume
144 of LIPIcs, pages 73:1–73:16. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2019.

[NSS95] Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and Near-
Optimal Derandomization. In Proceedings of IEEE 36th Annual Foundations of
Computer Science, pages 182–191. IEEE, 1995.

[NW21] Jesper Nederlof and Karol Węgrzycki. Improving Schroeppel and Shamir’s Al-
gorithm for Subset Sum Via Orthogonal Vectors. In Proceedings of the 53rd

182

Tim Randolph Columbia University

Annual ACM SIGACT Symposium on Theory of Computing, pages 1670–1683,
2021.

[Pap94] Christos H Papadimitriou. On the Complexity of the Parity Argument and
Other Inefficient Proofs of Existence. Journal of Computer and system Sciences,
48(3):498–532, 1994.

[Pet11] Giorgis Petridis. Upper bounds on the cardinality of higher sumsets. Acta
Arithmetica, 158, 01 2011.

[Pis03] David Pisinger. Dynamic Programming on the Word RAM. Algorithmica,
35(2):128–145, 2003.

[PRW21] Adam Polak, Lars Rohwedder, and Karol Wkegrzycki. Knapsack and Subset
Sum with Small Items. In International Colloquium on Automata, Languages,
and Programming (ICALP), 2021.

[Ran23] Tim Randolph. A Hybrid Algorithm for Subset Sum and Equal Subset Sum.
2023.

[RR23] Victor Reis and Thomas Rothvoss. The Subspace Flatness Conjecture and
Faster Integer Programming. In 64th IEEE Annual Symposium on Foundations
of Computer Science, (FOCS), pages 974–988. IEEE, 2023.

[Ruz94] Imre Z. Ruzsa. Generalized Arithmetical Progressions and Sumsets. Acta Math-
ematica Hungarica, 65(4):379–388, 1994.

[Ruz09] Imre Z Ruzsa. Sumsets and Structure. Combinatorial Number Theory and
Additive Group Theory, pages 87–210, 2009.

[RW23] Tim Randolph and Karol Wegryzcki. Subset Sum with Constant Doubling.
2023.

[San12] Tom Sanders. On the Bogolyubov–Ruzsa Lemma. Analysis & PDE, 5(3):627–
655, 2012.

[San13] Tom Sanders. The Structure Theory of Set Addition Revisited. Bulletin of the
American Mathematical Society, 50(1):93–127, 2013.

[Sch11] Tomasz Schoen. Near Optimal Bounds in Freiman’s Theorem. Duke Mathemat-

183

Tim Randolph Columbia University

ical Journal, 158(1):1–12, 2011.

[SS81] Richard Schroeppel and Adi Shamir. A T = O(2n/2), S = O(2n/4) Algorithm for
Certain NP-Complete Problems. SIAM Jeournal on Computing, 10(3):456–464,
1981.

[Tao07] Terence Tao. Structure and Randomness in Combinatorics. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 3–15.
IEEE, 2007.

[Tao08] Terence Tao. Structure and Randomness: Pages From Year One of a Mathe-
matical Blog. American Mathematical Soc., 2008.

[Tre09] Luca Trevisan. Additive Combinatorics and Theoretical Computer Science.
ACM SIGACT News, 40:50–66, 2009.

[TV06] Terence Tao and Van H Vu. Additive Combinatorics, volume 105. Cambridge
University Press, 2006.

[Vio11] Emanuele Viola. Selected Results in Additive Combinatorics: An Exposition.
Number 3 in Graduate Surveys. Theory of Computing Library, 2011.

[Woe08] Gerhard J Woeginger. Open Problems Around Exact Algorithms. Discrete
Applied Mathematics, 156(3):397–405, 2008.

[Zha22] Yufei Zhao. Graph Theory and Additive Combinatorics. Notes for MIT, 18:49–
58, 2022.

184

Appendix A

Appendix to Chapter 2

A.1 Reduction of Multilist k-SUM to Single-List k-
SUM

The Multilist k-SUM problem is defined similarly to the k-SUM problem (Problem 2),
but with the single input set replaced by k input sets X1, X2, . . . , Xk. Instead of selecting k
elements from the single input set, we are now required to select 1 element from each of the
k input sets.

Multilist k-SUM can be reduced to k-SUM as follows.

Fix a Multilist k-SUM instance (X1, X2, . . . , Xk, t). Let b and c be the smallest powers
of 2 satisfying

b ≥ max
i∈k
||Xi||∞,

that is, larger than the largest input integer, and

c ≥ k.

For i ∈ [k], create the list
X ′

i := Xi + bci

by translating Xi by bci. We can think of this operation as adding a ‘flag’ to the bit
representation of each element to mark its membership in the original list Xi. The large
value b serves as an offset to prevent the sum of original input integers from affecting the
flag bits, while the multiplication of each flag bit by ci prevents interference between the flag
bits when at most k elements are added together.

Define a new k-SUM instance with the input list

X :=
⋃

i∈[k]
X ′

i

185

Tim Randolph Columbia University

and target
t′ := t+ b

∑
i∈[k]

ci.

The use of ‘flag’ bits ensures that X contains no duplicate elements. The equivalence of
the new problem follows from observing the one-to-one relationships between solutions to
the Multilist k-SUM instance (X1, X2, . . . , Xk, t) and the k-SUM instance (X, t′).

The new k-SUM instance contains kn inputs of size at most Ok(1) times larger than
elements of the original instance. Thus an nf(k)-time algorithm for k-SUM can be used to
solve the original Multilist k-SUM problem in time Ok(nf(k)).

A.2 Reduction of Multiset k-SUM to k-SUM
The Multiset k-SUM problem is defined similarly to the k-SUM problem (Problem 2),
but with set input replaced with multiset input; i.e., the input list is allowed to contain
duplicates. Multiset k-SUM can be reduced to k-SUM as follows.

We begin by recalling a definition and theorem from [NSS95].

Definition 6 (Splitter). An (n, k, ℓ)-splitter F is a family of functions from [n] to [ℓ] such
that for every set S ⊆ [n] of size k, there exists f ∈ F such that for every 1 ≤ j, j′ ≤ ℓ, the
values |f−1(j) ∩ S| and |f−1(j′) ∩ S| differ by at most 1.

In other words, for every S ⊆ [n] of size k, some f ∈ F partitions [n] into ℓ subsets in
a way that splits S as evenly as possible. The special case of an (n, k, k)-splitter is called
(n, k)-perfect hash family. A result due to Naor, Schulman, and Srinivasan allows us to
construct (n, k)-perfect hash families in time Ok(n log n).

Theorem 20 ([NSS95]). For any n, k ≥ 1, it is possible to construct an (n, k)-perfect hash
family of size ekkO(log k) log n in time ekkO(log(k)n log n.

Fix a Multiset k-SUM instance (X, t), let F be an (n, k)-perfect hash family, and consider
the set of Ok(log n) instances of Multilist k-SUM created by partitioning x⃗ according to the
elements of F . (Note that, without loss of generality, we can assume the Multilist k-SUM
instances do not contain duplicate elements in the same list. Because we must choose exactly
one element from each of the k input lists in Multilist k-SUM, we can remove duplicates from
the same list without changing whether a solution exists.)

By Definition 6, at least one of these new Multilist k-SUM instances has a solution if
and only if our original instance has a solution. We complete the reduction by converting
each new Multilist k-SUM instance into a k-SUM instance using the reduction given in
Appendix A.1.

186

Tim Randolph Columbia University

As a result, given an nf(k) time algorithm for k-SUM, we can construct and solve the
Ok(log(n)) Multilist k-SUM instances and recover a solution to the original Multiset k-SUM
instance, if one exists, in time Ok(nf(k) · log n).

187

	Acknowledgments
	Source Materials
	Introduction
	Core Concepts and Techniques
	The Meet-in-the-Middle Barrier
	The Representation Method
	Additive Structure
	Lower Bounds

	Prior State of the Art
	Generalized Subset Sum and Equal Subset Sum

	Contributions of This Thesis
	Chapter 3: Average-Case Algorithms for Subset Sum and Equal Subset Sum
	Chapter 4: Complementarity of Subset Sum and Equal Subset Sum
	Chapter 5: Log Shaving for Subset Sum
	Chapter 6: Subset Sum Parameterized in the Doubling Constant

	Preliminaries
	Notation
	Problem Statements
	Generalized Subset Sum
	-SUM
	-Subset Sum and -SUM

	Folklore and Utilities
	One-Sided Error, Instance Splitting, and Guessing Solution Sizes
	Output-Linear Enumeration of
	Bounds on Solution Size
	Bounds on Input Size
	Prime Hashing

	Average-Case Algorithms for Subset Sum and Equal Subset Sum
	Summary of Results
	Structural Results
	When Solutions Occur in the Case
	When Solutions Occur in the Case
	Expectation of
	Upper Bound on the Second Moment of

	Algorithmic Results
	Reduction to a Narrower Problem
	Overview of the GSS Algorithm
	Implementation Details and Signature Distribution Lemma
	Proof of Correctness
	Proof of Runtime
	Average-Case GSS on Dense Instances: Proof of

	Generalized Number Balancing

	The Complementarity of Subset Sum and Equal Subset Sum: Solving an "Either-Or" Problem
	Structure vs. Randomness and Subset Sum
	Summary of Results
	Solving EOSS Using Techniques From

	Easy ESS Instances
	Subset Sum Instances Which Are Easy ESS Instances
	Proof of : The Algorithm for EOSS

	Beyond the Meet-in-the-Middle Barrier: Log Shaving for Subset Sum
	Circuit RAM and Word RAM
	Summary of Results
	-Factor Speedup via Bit Packing
	Adapting to Word RAM

	-Factor Speedup via Orthogonal Vectors and the Representation Method
	Definitions and Notation
	Proof of
	Auxiliary Lemmas
	Adapting to Word RAM

	Subset Sum in Time
	Auxiliary Lemmas
	Adapting to Word RAM

	Subset Sum Parameterized in the Doubling Constant
	Summary of Results
	Freiman's Theorem Made Constructive
	Ruzsa's Modeling Lemma
	Bogolyubov's Lemma in
	Finding a GAP in a Bohr Set
	Ruzsa's Covering Lemma
	Proof of : The Constructive Freiman's Theorem
	Bounding GAP Coefficients

	Integer Programming with Constant Doubling
	-Binary ILP Feasibility
	-Bounded ILP Feasibility

	Subset Sum with Constant Doubling
	Reduction from -Subset Sum to Hyperplane-Constrained Binary ILP Feasibility
	Equivalence Between HBILP Feasibility and Subset Sum
	Non-negativity for HBILP Feasibility

	Unbounded Subset Sum with Constant Doubling
	-SUM with Constant Doubling

	Future Work
	The Meet-in-the-Middle Barrier, Reconsidered
	Unbalanced Subset Sum Instances
	Random-Like Instances.
	Structured Instances

	Open Questions from This Thesis

	References
	Appendix to
	Reduction of Multilist k-SUM to Single-List k-SUM
	Reduction of Multiset k-SUM to k-SUM

