
 X = [x1, x2, …    ,xn]

Average-free Sumsets

Average-free sumsets are sumsets which lack any arithmetic 
progression (AP) of three numbers: they don’t contain any 

subsets like [1, 2, 3] or [4, 8, 12]. For that reason, they’re also 
known as 3-AP-free sets. The central claim surrounding 

average-free sets has to do with the size of their A relative to 
their sumset A + A. We believe that if we know a solution set A 
is average-free, we also know that the size of A + A must be = 

ω(size of A).

Contributions and Thanks:

Using Concepts from Additive Combinatorics to Identify Structure 
in Sets

“Can we reconstruct a set given the 
aftermath of an operation?”

Sumset Recognition:

Find a set of natural numbers A:

Given a set X containing natural numbers

X = [ x1 , x2 , x3 ,  . . .  ,  xn-2 , xn-1 , xn ]

A = [ a1 , a2 , a3 ,  . . .  ,  am-2 , am-1 , am ]

satisfying A + A = X.
A + A := {a + b | a, b ∊ A}

X = [2, 5, 8, 11, 14] A = [1, 4, 7]

Example:

Exact Algorithms for Recognizing Sumsets:
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A sumset X is perfect if there exists A such that

A + A = X,

where all pairwise sums in A are unique.

A = [1, 3, 6]    X = [2, 4, 6, 7, 9, 12]   VS   A = [1, 5, 9]    X = [2, 6, 10, 14, 18]

(5 + 5 = 1 + 9 = 10)
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Why Study Exact Algorithms?

● Brute-force algorithms enumerate all possibilities, and find a solution in 
that long list.

● An exact algorithm can solve all instances of an NP-complete problem 
faster than the brute-force enumeration.

● Brute-force could technically be used to solve all NP-complete 
problems, but it is extremely slow, and not very clever, so we’re looking 
for interesting mathematical structure or facts that could give us a 
shortcut to the solution.

TOP     DOWN BOTTOM    UP
Top-down: Worst-Case Improvements
The top-down approach looks at the problem at its most broad: considering the worst-case, with no 
additional restrictions. While it can seem expansive, we’ve made progress while looking at the problem 
through this lens, developing a brute-force branching algorithm as well as a graphical solution. Both of 
these approaches depend on having a candidate set, thus to reduce runtime it is important to have the 
smallest set possible with respect to |X| = n.

Bottom-up: Perfect and Average-Free Cases
The bottom-up approach involves defining subproblems that we can solve efficiently. That is, we want to 
narrow the problem into smaller parts that are easier to solve. We can impose more structure on these smaller 
parts, which often allows us to make conjectures!

One of the main questions we asked ourselves with this approach was:

“Fixing some property of X, can we find A more efficiently?”

And to answer this, we identified two types of set structures: Perfect and Average-Free.

Perfect Sumsets

For our clique-finding algorithm to 
solve the problem in the most 
general case, our worst-case 
ends up being a graph structure 
colloquially called the 
“anti-triangle” structure. In this 
structure, vertices are sectioned 
into groups of three where they 
are connected to every other 
vertex in the structure except the 
vertices in that group.

Next Steps
Our next steps from the top-down perspective are to further 
investigate the equivalencies that are needed to make the 
triangle case possible. Our intuition is that it is impossible to 
occur, due to there needing to be strict limitations and side 
possibilities to form it. We are now currently trying to define a 
procedure to consistently generate the anti-triangle case, to 
create one or fully disprove its existence.

The above grid represents the additions 
between elements of A. The blue line 
illustrates the ordering of the elements of 
X. If two additions of A are equivalent, the 
representative closer to the diagonal is 
chosen along the path.
Red indicates a member of X that is 
unique, i.e., there exists only one sum in A 
that equals this element. 

An Efficient Algorithm for Perfect Sumsets
1. We know a1 + an will be the lowest element in X, so subtract a1
2. Add anto A
3. Add an to each element in A, and subtract the sum from X
4. Repeat this process until X is empty, then we found A

Structural Observations and Building An 
Intuition

Assumptions: When discussing the form of X and A, we assume 
them to be ordered (least to greatest) and all elements within 
them to be unique integers.

Observation 1 (Starting Values): If A+A = X, then x1, x2, xn-1, and 
xn must take the form:

This lets us find a1, a2, am-1, and am in constant time!

Observation 2 (Internal Orderings in X): 
We know pairwise sums of A must exist within X in the following 
orders:

(a)

(b)  

(c)

Definition 1 (Candidate Sets):
We call any set C such that it is guaranteed A ⊆ C, a candidate 
set.

Ex:  A ⊆ X - ai  (from observation 2a)
  A ⊆ X/2     (from observation 2b)

Methods
● From our initial dive into surrounding literature, we found the 

Sumset Recognition problem hadn't been widely explored from an 
algorithmic perspective, though it was proven to be NP-complete 
(Abboud, Amir, et al.). So, we would need to chart a whole new 
territory in order to make progress!

● To organize our thinking, we thought about the problem space 
through the lens of two approaches: top-down and bottom-up. 

 Set Reconstruction, Broadly
● By thinking about Sumset Recognition in terms of the 

reconstruction of a set, we turn this problem into a puzzle!

● Now, our job is to find the clues for A that already exist in X.

Maximal Clique Worst Case

Next Steps
Our next steps from the bottom-up perspective are to discover 
more about the structure of average-free sumsets and try to 
create a more efficient algorithm for them than our general 
case algorithm. We believe that due to the extra structure, we 
will be able to find time improvements that wouldn’t have been 
possible otherwise. 

Clique Finding Algorithm

1. Form the candidate set as described
2. Turn every element in the candidate set into a vertex
3. Create an edge between vertices if the sum is in X.
4. Find all maximal cliques.
5. Return a maximal clique if those candidates form X.

ai+j

Brute Branching Algorithm

1. Form Cgoat.
2. Test every subset of the candidate set to see if they produce X.
3. Return any successful subsets A.

The runtime of this algorithm is O*(2|C|), as we can choose to include 
or exclude each candidate from our set A. Thus, using the result for 
our tightest candidate set, the worst-case run time becomes O*(2n/2|).

1+1 = 2 1+4 = 5 1+7 = 8 4+4 = 8 4+7 = 11 7+7 = 14

The tightest candidate set we’ve found is formed as 
follows:

From observations 2a and 2b it is clear that this set 
must superset A and is therefore a candidate set.

Cgoat := (X / 2) Ո (X - a1) Ո (X -  am)

We know |Cgoat|  < n/2 because the elements 
from X that fall in the range [a1, am] after 
subtracting a1 must fall before the element a1 + 
am by observation 2a. Equivalently the 
elements falling in this range after subtracting 
am must fall after a1+ am. Thus each candidate 
must have a representative in the “left” and 
“right” side of set X, meaning the largest it can 
be is n/2 as desired. c ∈ A

c ∉ A

Candidate of Size n/2

Note that the elements from X that fall in the 
range [a1, am] after subtracting a1 and am must fall 
before a1 + am and after a1+ am respectively (via 
observation 2a). Thus each candidate must have 
a representative in the “left” and “right” side of 
set X, meaning it is of size at most n/2.

Brief Explanation of |C| < n/2

The anti-triangle structure leads to a worst case bound of 
O*(3n/3) because it maximizes the amount of maximal cliques.  
Since we also cut the candidate set in half, we get a worst 
case bound of O*(3n/6).
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