
 X = [x1, x2, … ,xn]

Average-free Sumsets

Average-free sumsets are sumsets which lack any arithmetic
progression (AP) of three numbers: they don’t contain any

subsets like [1, 2, 3] or [4, 8, 12]. For that reason, they’re also
known as 3-AP-free sets. The central claim surrounding

average-free sets has to do with the size of their A relative to
their sumset A + A. We believe that if we know a solution set A
is average-free, we also know that the size of A + A must be =

ω(size of A).

Contributions and Thanks:

Using Concepts from Additive Combinatorics to Identify Structure
in Sets

“Can we reconstruct a set given the
aftermath of an operation?”

Sumset Recognition:

Find a set of natural numbers A:

Given a set X containing natural numbers

X = [x1 , x2 , x3 , . . . , xn-2 , xn-1 , xn]

A = [a1 , a2 , a3 , . . . , am-2 , am-1 , am]

satisfying A + A = X.
A + A := {a + b | a, b ∊ A}

X = [2, 5, 8, 11, 14] A = [1, 4, 7]

Example:

Exact Algorithms for Recognizing Sumsets:

Team Members:
Professor Tim Randolph
Theo Julien
Riley Brown
Mia Alexander

Acknowledgements:
We would like to thank everyone who played a role in
making this research possible: Professor Tim
Randolph, Chelsey Calingo, Kevin Herrera, Nic Dodds,
Landon Tu, Selene Ye, and Bill Lenhart.

Funding:
This project was funded in part by contributions
from the National Science Foundation under
Grant #2243941, and in part by Harvey Mudd
College’s Computer Science Department.

A sumset X is perfect if there exists A such that

A + A = X,

where all pairwise sums in A are unique.

A = [1, 3, 6] X = [2, 4, 6, 7, 9, 12] VS A = [1, 5, 9] X = [2, 6, 10, 14, 18]

(5 + 5 = 1 + 9 = 10)

CANVA LINK

High Difficulty

Perfect Arithmetic
Progression

Low Difficulty

Why Study Exact Algorithms?

● Brute-force algorithms enumerate all possibilities, and find a solution in
that long list.

● An exact algorithm can solve all instances of an NP-complete problem
faster than the brute-force enumeration.

● Brute-force could technically be used to solve all NP-complete
problems, but it is extremely slow, and not very clever, so we’re looking
for interesting mathematical structure or facts that could give us a
shortcut to the solution.

TOP DOWN BOTTOM UP
Top-down: Worst-Case Improvements
The top-down approach looks at the problem at its most broad: considering the worst-case, with no
additional restrictions. While it can seem expansive, we’ve made progress while looking at the problem
through this lens, developing a brute-force branching algorithm as well as a graphical solution. Both of
these approaches depend on having a candidate set, thus to reduce runtime it is important to have the
smallest set possible with respect to |X| = n.

Bottom-up: Perfect and Average-Free Cases
The bottom-up approach involves defining subproblems that we can solve efficiently. That is, we want to
narrow the problem into smaller parts that are easier to solve. We can impose more structure on these smaller
parts, which often allows us to make conjectures!

One of the main questions we asked ourselves with this approach was:

“Fixing some property of X, can we find A more efficiently?”

And to answer this, we identified two types of set structures: Perfect and Average-Free.

Perfect Sumsets

For our clique-finding algorithm to
solve the problem in the most
general case, our worst-case
ends up being a graph structure
colloquially called the
“anti-triangle” structure. In this
structure, vertices are sectioned
into groups of three where they
are connected to every other
vertex in the structure except the
vertices in that group.

Next Steps
Our next steps from the top-down perspective are to further
investigate the equivalencies that are needed to make the
triangle case possible. Our intuition is that it is impossible to
occur, due to there needing to be strict limitations and side
possibilities to form it. We are now currently trying to define a
procedure to consistently generate the anti-triangle case, to
create one or fully disprove its existence.

The above grid represents the additions
between elements of A. The blue line
illustrates the ordering of the elements of
X. If two additions of A are equivalent, the
representative closer to the diagonal is
chosen along the path.
Red indicates a member of X that is
unique, i.e., there exists only one sum in A
that equals this element.

An Efficient Algorithm for Perfect Sumsets
1. We know a1 + an will be the lowest element in X, so subtract a1
2. Add anto A
3. Add an to each element in A, and subtract the sum from X
4. Repeat this process until X is empty, then we found A

Structural Observations and Building An
Intuition

Assumptions: When discussing the form of X and A, we assume
them to be ordered (least to greatest) and all elements within
them to be unique integers.

Observation 1 (Starting Values): If A+A = X, then x1, x2, xn-1, and
xn must take the form:

This lets us find a1, a2, am-1, and am in constant time!

Observation 2 (Internal Orderings in X):
We know pairwise sums of A must exist within X in the following
orders:

(a)

(b)

(c)

Definition 1 (Candidate Sets):
We call any set C such that it is guaranteed A ⊆ C, a candidate
set.

Ex: A ⊆ X - ai (from observation 2a)
 A ⊆ X/2 (from observation 2b)

Methods
● From our initial dive into surrounding literature, we found the

Sumset Recognition problem hadn't been widely explored from an
algorithmic perspective, though it was proven to be NP-complete
(Abboud, Amir, et al.). So, we would need to chart a whole new
territory in order to make progress!

● To organize our thinking, we thought about the problem space
through the lens of two approaches: top-down and bottom-up.

 Set Reconstruction, Broadly
● By thinking about Sumset Recognition in terms of the

reconstruction of a set, we turn this problem into a puzzle!

● Now, our job is to find the clues for A that already exist in X.

Maximal Clique Worst Case

Next Steps
Our next steps from the bottom-up perspective are to discover
more about the structure of average-free sumsets and try to
create a more efficient algorithm for them than our general
case algorithm. We believe that due to the extra structure, we
will be able to find time improvements that wouldn’t have been
possible otherwise.

Clique Finding Algorithm

1. Form the candidate set as described
2. Turn every element in the candidate set into a vertex
3. Create an edge between vertices if the sum is in X.
4. Find all maximal cliques.
5. Return a maximal clique if those candidates form X.

ai+j

Brute Branching Algorithm

1. Form Cgoat.
2. Test every subset of the candidate set to see if they produce X.
3. Return any successful subsets A.

The runtime of this algorithm is O*(2|C|), as we can choose to include
or exclude each candidate from our set A. Thus, using the result for
our tightest candidate set, the worst-case run time becomes O*(2n/2|).

1+1 = 2 1+4 = 5 1+7 = 8 4+4 = 8 4+7 = 11 7+7 = 14

The tightest candidate set we’ve found is formed as
follows:

From observations 2a and 2b it is clear that this set
must superset A and is therefore a candidate set.

Cgoat := (X / 2) Ո (X - a1) Ո (X - am)

We know |Cgoat| < n/2 because the elements
from X that fall in the range [a1, am] after
subtracting a1 must fall before the element a1 +
am by observation 2a. Equivalently the
elements falling in this range after subtracting
am must fall after a1+ am. Thus each candidate
must have a representative in the “left” and
“right” side of set X, meaning the largest it can
be is n/2 as desired. c ∈ A

c ∉ A

Candidate of Size n/2

Note that the elements from X that fall in the
range [a1, am] after subtracting a1 and am must fall
before a1 + am and after a1+ am respectively (via
observation 2a). Thus each candidate must have
a representative in the “left” and “right” side of
set X, meaning it is of size at most n/2.

Brief Explanation of |C| < n/2

The anti-triangle structure leads to a worst case bound of
O*(3n/3) because it maximizes the amount of maximal cliques.
Since we also cut the candidate set in half, we get a worst
case bound of O*(3n/6).

https://www.canva.com/design/DAGtRrcZwIY/gOAIfu5mp3mM2u_wM3O4lA/edit?utm_content=DAGtRrcZwIY&utm_campaign=designshare&utm_medium=link2&utm_source=sharebutton

