A Survey of Undergraduate Theory of Computation Curricula in
the United States

Ryan E. Dougherty* Tim Randolph™ Tzu-Yi Chen
ryan.dougherty@westpoint.edu trandolph@g.hmc.edu tzuyi.chen@pomona.edu
United States Military Academy Harvey Mudd College Pomona College

West Point, New York, USA

Claremont, California, USA

Claremont, California, USA

Jeff Erickson Matthew Ferland Dennis Komm
jeffe@illinois.edu ferlandm@dickinson.edu dennis. komm@inf.ethz.ch
University of Illinois Dickinson College ETH Zirich

Urbana-Champaign
Urbana, Illinois, USA

Carlisle, Pennsylvania, USA

Zurich, Switzerland

Jonathan Liu Timothy Ng Ana Smaranda Sandu
jonliu@uchicago.edu timng@uchicago.edu smaranda.sandu@wellesley.edu
University of Chicago University of Chicago Wellesley College

Chicago, Illinois, USA

Chicago, Illinois, USA

Wellesley, Massachusetts, USA

Michael Shindler Edward Talmage Thomas Zeume
mikes@uci.edu elt006@bucknell.edu thomas.zeume@rub.de
UC Irvine Bucknell University Ruhr University Bochum

Irvine, California, USA

Abstract

Theory of computation (ToC), the subfield of theoretical computer
science concerned with automata, formal languages, grammars,
computability, and the foundations of complexity theory, among
other topics, is a staple of undergraduate computer science pro-
grams. Nevertheless ToC pedagogy is severely understudied from
the perspective of computing education research (CER).

We surveyed institutions of higher education in the United States
that awarded at least one bachelor’s degree in computer science
during the 2022-2023 academic year in order to learn about their
ToC curricula. We asked questions designed to determine:

e what topics are taught in ToC courses,

e where ToC courses appear in the curriculum,

o whether and in what contexts ToC courses are required,

e how ToC courses are organized, including student composi-
tion, course staff demographics, and class format, and

o which pedagogical tools are most commonly deployed in
ToC classrooms.

We received responses from faculty members representing a diverse
set of 166 institutions. Our major findings include (1) a list of the

*Working group co-leader.
1LW(nrking group co-leader.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only. Request permissions from owner/author(s).

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1408-5/2024/12

https://doi.org/10.1145/3708550.3730559

Lewisburg, Pennsylvania, USA

Bochum, Germany

most frequently covered ToC topics indexed by rate of coverage
and position within the curriculum, (2) an overview of the most
common attributes of ToC courses and classrooms (course staff,
instruction format, section size, etc.,), and (3) that very few courses
use ToC-specific digital teaching tools.

CCS Concepts

« Social and professional topics — Computing education; «
Theory of computation;

Keywords

Theory of computation, CS course design, CS pedagogy, technical
CS course

ACM Reference Format:

Ryan E. Dougherty, Tim Randolph, Tzu-Yi Chen, Jeff Erickson, Matthew
Ferland, Dennis Komm, Jonathan Liu, Timothy Ng, Ana Smaranda Sandu,
Michael Shindler, Edward Talmage, and Thomas Zeume. 2024. A Survey of
Undergraduate Theory of Computation Curricula in the United States . In
2024 Working Group Reports on 1st ACM Virtual Global Computing Education
Conference (SIGCSE Virtual-WGR 2024), December 5-8, 2024, Virtual Event,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3708550.
3730559

1 Introduction

Theory of computation (ToC) provides a rigorous, formal founda-
tion for undergraduate courses across the discipline of computer
science (CS). As such, many undergraduate CS programs require
their majors to demonstrate proficiency in ToC. In this report, we
present the results of a national survey of colleges and universities
focused on ToC curricula.

https://orcid.org/0000-0003-1739-1127
https://orcid.org/0000-0003-4287-0680
https://orcid.org/0000-0003-3077-6099
https://orcid.org/0000-0002-5253-2282
https://orcid.org/0000-0001-5289-7567
https://orcid.org/0000-0002-9024-1558
https://orcid.org/0000-0002-8602-2002
https://orcid.org/0000-0001-9980-6976
https://orcid.org/0009-0001-7451-1810
https://orcid.org/0000-0002-3365-1729
https://orcid.org/0009-0001-9108-6190
https://orcid.org/0000-0002-5186-7507
https://doi.org/10.1145/3708550.3730559
https://doi.org/10.1145/3708550.3730559
https://doi.org/10.1145/3708550.3730559

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

As this is the first major survey on the subject, we do not claim
to provide a complete picture of ToC teaching. However, we hope
to provide a useful baseline against which college educators can
compare their ToC curricula and provide a foundation for future
collaborations among ToC educators and researchers.

Our survey attempts to address the following three research
questions. In the context of institutions in the United States that
offer bachelor’s degrees in CS or closely related fields of study, we
asked:

e RQ1. What specific concepts and topics do faculty teach in
“ToC courses”?

e RQ2. What are the most common administrative and class-
room features of “ToC courses,” (number and demographics
of course staff, format of instruction, section size, etc.)?

e RQ3. What digital and other pedagogical tools do faculty
use when teaching “ToC courses”?

The first difficulty in answering these questions is reaching a
satisfactory definition of a “ToC course” There is no single list of
the topics that comprise “theory of computation,” and the use of
the term is not clearly distinguished from “theory of computing;’
“theoretical computer science,” and other near-synonyms. Courses
labeled “theory of computation” may include material on formal lan-
guages, grammars, regular expressions, automata theory, Boolean
circuits, computability, complexity theory, and related material from
fields such as algorithms, programming languages, and natural lan-
guage processing, among many others. Among the 12 members of
our working group, all of whom teach or have taught some version
of a ToC course, we reached consensus on a list of “ToC topics”
inspired by the “Computational Models and Formal Languages”
knowledge unit of the 2023 ACM Computer Science Curriculum
[19]. This list of topics effectively defines the scope of ToC for the
purposes of our survey. (We take no position on the “correct” scope
of ToC, but explain our usage and the focus of the survey in more
detail in Section 3.3.)

We prompted respondents to identify a small set of courses in
which students first experienced clusters of these topics in signifi-
cant detail, and treated these as our representative “ToC courses.”
We then asked survey respondents a variety of questions about the
ToC courses at their institutions, including questions concerning

e how ToC courses fit into the progression of the CS major,
including their prerequisites;

e how many ToC courses are offered, how frequently these

courses are offered, and whether they are required;

ToC course size, course staff, and format of instruction;

role and professional focus of the primary instructor; and

what pedagogical tools are used in ToC courses.

We directed our questions to senior faculty members at some
1,058 U.S. colleges and universities that offer bachelor’s degrees
in computer science and received responses from 166. Section 3
includes information about our criteria for including institutions
and selecting institutional representatives to take the survey.

The remainder of this report is organized as follows. Section 2
covers related work, including similar survey research and existing
computing education research (CER) on ToC curricula and peda-
gogy. Section 3 details our research methods, including information
about survey scope, respondents, data collection, survey structure,

Ryan E. Dougherty et al.

and limitations. Section 4 presents the results of our survey. Sec-
tion 5 discusses the results in context, summarizes the implications
of our results for our three research questions, and offers some
speculative conclusions. Section 6 concludes the report with open
questions and future work prompted by this research.

2 Related Work

To the best of our knowledge this is the first survey of ToC courses
from the perspective of CER. Most similar in spirit to our survey is
that of Luu et al. [20], who conducted a survey of algorithms courses
at undergraduate institutions. Algorithms and ToC are related but
distinct sub-areas of CS: to make a rough distinction using the
terminology of the ACM/IEEE/AAAI CS2023 Curricular Guidelines,
ToC centers on the “Computational Models and Formal Languages”
knowledge unit, while Algorithms centers on the “Algorithmic
Strategies” knowledge unit [19].

Existing literature at the intersection of ToC and CER mainly
concerns course design, classroom experiments, visualization of
theory concepts and auto-grading systems. In the subsections below
we provide a brief and noncomprehensive summary of existing
work in this area. A full survey of computing education research in
ToC would be a useful complement to the current work.

2.1 ToC Course Design

Several authors have explored alternative designs for ToC courses
and for courses outside of computer science that incorporate ToC
topics. These are immediately relevant to our RQ2 (and perhaps
RQ1) although they may not be representative of typical ToC experi-
ences. For example, Berque et al. introduced a split-screen approach
for teaching ToC in which a question was posed to students on an
upper screen and students drew a diagram underneath [4]. East [14]
developed a framework for integrating a theory-based perspective
throughout a CS curriculum. Del Vado Virseda went further by
exploring the pedagogical benefits of introducing ToC material into
other subject areas, such as economics and the social sciences [10].
The same author experimented with teaching undecidability results
from computability theory in physics and mathematics courses in
order to increase student interest in and future success in learning
ToC [8, 9].

Blumenthal [5] performed a curricular survey of computability
courses to determine the extent to which computer science majors
are exposed to Turing Machines and other equally powerful models
of computation. Based on course descriptions, syllabi, and course
materials, he concluded that a majority of CS majors are not exposed
to a definition of computability involving Turing Machines,! and
very few are exposed to alternative models, which informs RQ1.
He proposed three changes to the ACM CS Curricular 2013 report
based on his results: (1) making the Chomsky Hierarchy, Turing
machines, Church-Turing thesis, and Uncomputability required;
(2) modifying the formal computation topic to include Turing ma-
chines and some other equivalent formal model; and (3) changing
the name of the “Algorithms and Complexity” knowledge area to
“Algorithmic Foundations”.

This appears to conflict with our survey results: a majority of respondents to this
survey indicated that their majors were exposed to Turing machines in at least one
required course (Table 1). One possible explanation for this discrepancy is sampling
bias (see Section 3.4).

A Survey of Undergraduate Theory of Computation Curricula in the United States

2.2 ToC Classroom Experiments

ToC classrooms have inspired a wide variety of classroom experi-
ments; we cite a small sample below.

Lack of engagement in ToC courses has been a common chal-
lenge for educators. Sigman observed that engaging students in
ToC is “notoriously difficult” and employed a discovery learning
technique to boost engagement in a ToC course [27]. Pillay [23],
with similar motivation to Sigman, conducted a study to under-
stand points at which students struggled in ToC and attributed
student difficulties to immature problem-solving skills and issues
with generalizing specific observations to abstract theorems such
as the Pumping Lemma. Analyzing and attempting to remedy cur-
ricular features that students often find difficult requires a baseline
understanding of the common curricular features of ToC classes
(RQ2) and topics taught (RQ1).

Others have improved engagement by incorporating presenta-
tion skills and otherwise encouraging student agency. Dougherty
[12, 13] developed a scaffolded “mock conference” experience in
his ToC class; additionally, he implemented a “backwards” ordering
of concepts in a ToC course [11]. Randolph [24] implemented ped-
agogical strategies of participatory governance in the context of
an intermediate ToC class. Experimental teaching approaches both
challenge existing administrative and classroom features of ToC
courses (RQ2) and explore the potential of innovative pedagogical
strategies (RQ3).

Also relevant to RQ3 are the attempts of some authors to lever-
age programming and implementation, more traditional pedagogi-
cal tools in computer science, to teach ToC. For example, Morazan
has designed an introduction to formal languages and automata
theory that emphasizes programming implementations [22]. Krone
[18], in an older work, had students write programs to understand
the Church-Turing thesis more effectively.

2.3 ToC Tools: Visualizations and Auto-Grading
Systems

Theory of computation introduces students to several complex
discrete mathematical objects, notably automata, and students en-
countering these topics for the first time struggle to build intuition
for how they work. Several authors have addressed this problem
by building tools for visualizing ToC concepts, and their efforts
are relevant to our RQ3. For example, Mohammed et al. [21] de-
veloped visualizations and auto-graded exercises for a ToC course
and analyzed student performance. Bennett-Manke et al. [3] (see
also a follow-up work due to Baker et al. [2]) developed an auto-
matic visualizer for automata simulation that connects the formal
definition of an automaton with its state diagram.

In addition to visualization tools, ToC instructors have developed
ToC-specific auto-grading tools to evaluate student work more
efficiently. Alur et al. [1] first introduced a method for automatically
grading finite automata questions at-scale. Robson et al. [25] built a
tool for creating finite automata questions that can be auto-graded;
similar work was performed by Erickson et al. [15], again with finite
automata. Schmellenkamp et al. [26] built a tool for auto-graded
exercises on formal languages and computational reductions.

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

3 Research Methods

In this section, we summarize our target survey population and
the criteria for survey participation we used to generate a list of
institutions approximating the target. We then describe our data
collection procedure and the design of the survey instrument itself.
Finally, we briefly discuss the limitations of our survey data.

3.1 Survey Scope and Criteria for Participation

Our intended survey population is those colleges and universities
in the U.S. that teach ToC and/or closely related topics in CS. As a
proxy for this, we surveyed institutions that offer bachelor’s degrees
in CS or a closely related field. This required generating a list of
institutions and collecting the contact information of respondents
who could provide reliable information about their institution’s CS
program.

To create the initial list of colleges and universities we used data
from the Integrated Postsecondary Education Data System (IPEDS).
This data is provided by the National Center for Education Statistics
(NCES), the agency within the U.S. Department of Education in
charge of collecting and publishing statistics about education in the
U.S. IPEDS contains most of the information the NCES publishes
about higher education, and virtually every institution that can
be considered a college or university participates in IPEDS data
collection. The institutions participating can be roughly divided
into three categories:

o Institutions that have Program Participation Agreements (PPAs).
Every institution with a PPA is required to provide insti-
tutional data to the NCES for publishing in IPEDS. Every
institution that directly participates in any of the Title IV
Federal Financial Student Aid programs, such as the Pell
Grant or Work Study programs, must have a PPA. Programs
that fail to report on time are fined, so these institutions have
a nearly 100% response rate.

e Satellite campuses, such as the many Pennsylvania State
University campuses, which do not have a PPA of their own,
but are “under” an institution with a PPA, can elect to either
report individually or report in aggregate under their parent
institution. This is notable, as Carnegie Classification is not
given to satellite campuses without their own PPA, making
the list of IPEDs participants broader than the Carnegie
Classification list.

o A relatively small number of non-Title IV participating insti-
tutions also participate in IPEDS.

We worked with data from the 2022-2023 academic year, the
most recent available at the time of our survey. This data includes
approximately 6,100 Title IV participating institutions and 300 other
institutions, for a total of 6,400. We then reduced this list to the
set of institutions that offer a bachelor’s degree in some field of
computing using IPEDS file “C2023_A. which records information
about each degree granted by every institution in the 2022-2023
academic year. For our study, we required that an institution have
a degree with the following characteristics:

e The degree had to have a 2 digit CIP code of “11” (“Com-
puter and Information Sciences and Support Services”). This
category includes Computer Science, Informatics, Software
Engineering, and several other computing degrees.

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

o The degree had to have an award level code of “05” which
corresponds to a bachelor’s degree.

After applying this process, we were left with 1,451 institutions.
For each of these, we gathered the following from the IPEDS data-
base:

e Institution name,

o Institution nickname(s),

o Institution city and state, and
o Institution homepage URL.

These 1,451 institutions made up our preliminary list of target
institutions. For each institution on the preliminary list, we manu-
ally gathered contact email addresses according to the following
protocol: First, we attempted to discover the institutional email
address of the chair of the department offering the major in CS. If
we failed to identify the email of a department chair, we attempted
to identify the contact information of a faculty member teaching
theory of computation. Finally, if we could not identify faculty
teaching a ToC course or courses, we attempted to identify the
contact information of any senior faculty member, ideally a tenured
faculty member at the rank of full professor, non-emeritus. The pri-
mary sources for this information were public-facing department
web pages, academic directories, course catalogs, and public-facing
faculty web pages. We omitted institutions for which we could not
find contact information as well as permanently closed institutions
and institutions no longer accepting enrollments.

3.2 Data Collection

In total, we recovered contact information for 1,058 institutions
(72.9%2 of the preliminary list). Delivery failed for 29 contact ad-
dresses, leaving a total of 1,029 institutions. The most common
reasons that we failed to recover contact information for an in-
stitution were a very limited or nonexistent web presence, a web
presence without publicly listed faculty or faculty contact informa-
tion, or the lack of any program with a theoretical component (for
example, a standalone program in IT Systems Management).

We emailed each institution with a short description of our sur-
vey and a link to the survey itself, which was hosted using Google
Forms. We instructed recipients to take the survey themselves or
pass it along to the member of their department best qualified to
answer questions about how their institution teaches ToC. We did
not offer compensation or other incentives to respondents. We sent
initial emails on the 23rd and 24th of October 2024 and reminder
emails on the 5th of November 2024. Among the 1,029 institutions
we contacted, we received survey responses from 166 (16.1%). Since
many institutions on our preliminary contact list did not appear
to offer ToC of any kind in their curriculum,® we believe that the
effective response rate among institutions teaching ToC may have
been much higher than this figure suggests.

3.3 Survey Structure

To organize our list of “theory topics, we grouped topics into three
broad categories:

2Throughout the paper, we write out percentages to the first decimal place. This does
not indicate statistical significance.

30n the basis of the publicly-available course catalogs, faculty profiles, and major
programs reviewed while compiling the contact list.

Ryan E. Dougherty et al.

(1) Automata Theory: Topics including formal language classes,
grammars, and machine models other than Turing machines.

(2) Computability Theory: Topics including Turing machines,
decidability and undecidability, and formal models equiva-
lent in power to Turing machines.

(3) Basic Complexity Theory: Topics such as time and space
complexity, complexity classes, and polynomial-time reduc-
tions.

Within each category we compiled a list of specific topics that
seemed likely to appear in an undergraduate CS curriculum. We
intended our list to include the breadth of topics often covered
in a first course on theory of computation and to avoid topics
primarily covered in algorithms courses and adjacent “Theory B”
topics such as programming language semantics and formal logic.
Our topic list was influenced by the desire to avoid duplicating
existing work, particularly the survey of algorithms courses due
to Luu et al. [20]. We also consulted the “Algorithmic Foundations:
AL-Models: Computational Models and Formal Languages” list
of knowledge units in the ACM/IEEE/AAAI CS2023 Curricular
Guidelines [19].* The final list of theory topics was achieved by
consensus resolution of the 12 instructors in our working group,
all of whom teach ToC. (We do not claim any authoritative status
for our topic list, and believe excluded topics would be excellent
inclusions in a follow-up survey.) Table 1 presents the entire list of
topics, grouped according to our three categories.

Our survey consisted of four components: basic information
about the respondent’s institution, questions about theory of com-
putation topics, questions about theory of computation courses, and
questions about course logistics. In order to learn the demographics
of the institutions represented in our survey data, we asked ques-
tions about the category of the respondent’s institution, its size,
and the size of the CS major (or nearest equivalent). In the next sec-
tion, we asked questions about where our theory topics appeared
in the curriculum. We also provided an opportunity for respon-
dents to list topics omitted from our list. In the third section, we
asked about the courses in which students typically first encounter
each topic category (Automata Theory, Computability Theory, and
Basic Complexity Theory) in “significant depth”. We then asked
several follow-up questions about the “ToC courses” respondents
named. These questions included information about ToC prerequi-
sites, whether ToC courses are required for CS majors, course size,
and use of teaching assistants (TAs). We also asked about the faculty
who teach ToC courses and the digital and other pedagogical tools
used in ToC classes. Finally, we provided an open-ended prompt so
that respondents could include additional information about the
survey or any of their responses if desired.

3.4 Survey Limitations
Among institutions in the U.S. that confer bachelor’s degrees in CS,

our respondents represent the subset of institutions that

(1) have publicly available contact information,
(2) responded to an email invitation during a 4-week period in
October/November 2024,

4This includes nearly all of the topics listed in the 2013 and 2008 ACM Curricular
Guidelines [6, 16] as well.

A Survey of Undergraduate Theory of Computation Curricula in the United States

(3) had a faculty member knowledgeable about the institution’s
(theory of computation) curriculum, and
(4) chose to devote time to respond to our survey.

Each of these items may have introduced selection bias into our
data. We were able to contact most (1,029 of 1,451) institutions
eligible according to our selection criteria. Those that we were
unable to contact were disproportionally smaller, newer, and for-
profit institutions, as well as satellite campuses of larger universities.
It seems reasonable to assume that respondents able to complete
a survey concerned with theory of computation curricula were
drawn disproportionately from institutions that regularly teach
ToC.

We believe that our sample captures the breadth of ways in which
institutions in the United States teach ToC to undergraduates, but
did not adjust the data to represent institution or program types
proportionally. In particular, our survey treats each institution as a
single respondent, but does not weight by CS program size. Thus
our data may over-represent the frequency of curricular features
common at smaller institutions relative to how often the median
student encounters these curricular features.

3.4.1 Peculiarities of Institutions Teaching ToC. We explicitly re-
stricted our sample of institutions to those that offer bachelors’
degrees in CS (see Section 3). This excludes some institutions of
higher education teaching CS (for instance, those offering 2-year
degrees), including some that may offer theory of computation
according to our definition. Moreover, we recognize that the set
of schools that offer programs in CS is not the same as the set of
schools that offer significant course material in theoretical CS, and
the set of schools that teach theoretical CS (construed broadly to
include algorithms and the theoretical aspects of other subfields
such as programming languages and data structures) is a superset
of those that teach theory of computation as we define it.

Certain programs that fall under the broader heading of Com-
puter and Information Systems are focused on preparing students
for specific roles and work environments (for example, programs
in IT management, cybersecurity, or systems administration). Al-
though we did not collect data on this point, we suspect that pro-
grams in this category are less likely to offer coursework in theory
of computation and in theoretical CS more broadly. Because our
invitation to participate explicitly requested input from faculty fa-
miliar with theory of computation, we expect that our sample is
somewhat representative of programs that offer ToC. As such, it
may underrepresent programs that focus on job training and over-
represent programs that offer broader curricula based in the liberal
arts (this accords with the plurality of respondents in our sample
who self-identified as representing a Small Liberal Arts College).
Resolving this speculation is beyond the scope of our survey, and
we leave it as an open question.

If the set of institutions teaching ToC is unusual, our data on ToC
courses might reflect peculiarities of these institutions in addition
to features specific to ToC courses. In particular, we observed that
sections in ToC courses were relatively small (typically under 30
students) and only rarely taught by adjunct faculty. Both of these
statistics might reflect peculiarities of the institutions at which ToC
is taught rather than ways in which ToC classes differ from other
classes at the same institution.

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

Respondent Institution Types

R1 University 15 7% (26)

R2 University 10.2% (17)
Other Research
College or
University
Other Master's
College or
University

Small Liberal Arts
College (SLAC)

Historically Black
College or
University (HBCU)

Minority Serving
Institution (MSI)

21.7% (36)

43.4% (72)

13.9% (23)

0% 25% 50% 5% 100%

Figure 1: Institution types self-identified by respondents. Re-
spondents could select multiple institution types.

4 Results

4.1 Respondent Demographics

We gave survey respondents the ability to self-identify their institu-
tion in several ways, with the option of selecting all descriptors that
applied from a list of institution types. Among survey respondents,
72 (43.4%) identified their institution as a Small Liberal Arts College
(SLAC). 26 (15.7%) identified their institution as an R1 university
(institution awarding doctoral degrees with “very high research
activity”), while 17 (10.2%) selected R2 university (institution award-
ing doctoral degrees with “high research activity”) and 36 (21.7%)
selected master’s college or university. 23 respondents (13.9%) iden-
tified their institution as a Minority Serving Institution (MSI), while
7 (4.2%) indicated that their institution was a Historically Black
College or University (HBCU). Figure 1 summarizes the frequen-
cies with which survey respondents identified different institution
types.

Survey respondents also answered whether their institution of-
fered at least one major or major-equivalent program for undergrad-
uates in CS, and 98.8% responded “Yes” (the final two respondents
identified the name of their program that most closely approxi-
mated “Computer Science” as “Computer and Information Science”
and “Software Engineering”, respectively).

We divided institutions into four size categories according to
the ranges established by the Carnegie Classification of Institu-
tions of Higher Education: very small four-year (0-999), small four-
year (1000-2999), medium four-year (3000-9999), and large four-year
(10000+). To simplify the prompt, we asked respondents to approxi-
mate the “number of undergraduates” at their institutions instead
of the more technical “number of full-time equivalents”. Out of the
respondents, 15 (9.0%) approximated between 0-999 undergraduates
at their institutions. Out of these, 7 (46.7%) reported between 6-15
computer science majors per year, and 3 (20.0%) reported between
0-5 majors. Notably, 2 of them reported over 100 majors per year.

76 (45.8%) approximated their institution having between 1000-
2999 undergraduates. Out of these, 35 (32.9%) approximated having

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

Number of CS Majors by Institution Size

16-39 W 40-99 W 100-299 W 300-998
| 1000+

10000+ (1 8 12 H]

0-5 majors 6-15

0% 25% 50% 75% 100%

Figure 2: CS majors by institution size (number of responses,
% axis).

between 16-39 majors, and 22 (29%) approximated having between
40-99 majors. 43 (25.9%) approximated having between 3000-9999
undergraduates at their institutions. Out of these, 15 (19.7%) approx-
imated having between 40-99 majors and 16 (21.0%) approximated
having between 16-39 majors. Finally, the remaining 32 (19.3%) ap-
proximated having over 10000 undergraduates. 12 (37.5%) of these
approximated having between 300-999 majors, and 5 (15.6%) have
over 1000 majors. Figure 2 summarizes, for each school-size (e.g.
0-999 students), the number of CS majors in the school, as estimated
by respondents.

Limitations on survey respondents’ time and our own resources
made it unrealistic to determine precise enrollment data for each
of the institutions represented in our survey. Thus our data on
institution and major size represents respondents’ best estimates
and not official enrollments and major counts. Nevertheless we
believe this data is sufficient to gain a picture of the size of the
institutions and programs in our sample and to underscore the
large number of students impacted by ToC curricula.

4.2 Theory of Computation in the Curriculum

For each topic in our list of “ToC topics”, we asked respondents to
identify the status of the course or courses in which they “primarily
appear”. Respondents were asked to specify one of the following
five options:

e In a course required for at least one CS program.

o In a non-required (elective) course offered regularly.

e In a non-required (elective) course offered occasionally or
sometimes.

e In a non-required (elective) course offered rarely or not at
all.

e Unsure.

We did not attach numerical thresholds for terms like “occasionally”
and “rarely”, and instructed respondents to select the prompt that
best described the situation at their institution in their opinion,

Ryan E. Dougherty et al.

even if the match was not exact. The complete response data is
presented in Table 1.

The most common required topic on our list was “proof tech-
niques:” 150 (90.4%) of institutions reported that they cover proof
techniques in a course required for the CS major. No other topics
were covered in required courses by more than 75% of institutions.
Several topics were covered in a required course by at least 60% of
institutions: these were finite automata, regular expressions, regu-
lar languages, context-free grammars, context-free languages, and
complexity classes.

After introducing respondents to our topic list, we gave them
the opportunity to list “closely related subtopics not included on
the list above that you think should be included” We intended
this question to elicit any closely related topics often taught in
conjunction with the ToC topics on our list. Respondents offered the
following supplemental topics (Chomsky Normal Form, Quantum
Computing, and NP-Completeness were listed twice):

Backus Normal Form
Boehm-Jacopini theorem

CKY algorithm

Cantor’s diagonalization [argument]
Chomsky Normal Form (2)
Closure properties

Countable and uncountable sets
DFA minimization

Decision problems

Deterministic PDA

Extended CFG

Formal languages

Incompressible methods for proofs
Kleene’s recursion theorem
Kolmogorov Complexity

Lambda calculus

Logic inference

NP-Completeness (2)
Myhill-Nerode [Theorem]

P vs NP conjecture

Quantum computing (2)

RAM machines

Russell’s paradox

Space complexity

Space complexity hierarchy

Time complexity hierarchy
Traversal of maps, searching and complexity
Turing completeness

Universal Turing Machines
Universal computation

We include all answers for completeness, although several of
these topics appear to be closely related or equivalent to each other
or topics on our original list.

4.3 Primary Theory of Computation Courses

In order to address our research questions concerning the adminis-
trative make-up of and pedagogical tools used in ToC courses (RQ2
and RQ3), we first needed respondents to identify a “ToC course” or
courses. This presented a challenge: our chosen topics might appear

A Survey of Undergraduate Theory of Computation Curricula in the United States

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

Table 1: Where theory of computation topics are covered in the curriculum

Topics Required Elective-regular Elective-occasional Rarely Unsure/No answer
Proof techniques 150 (90.4%) 9 (5.4%) 2 (1.2%) 4(2.4%) 1(0.6%)
Topics in automata theory
Deterministic/nondeterministic finite automata 111 (66.9%) 30 (18.1%) 10 (6.0%) 13 (7.8%) 2(1.2%)
Pushdown automata (PDAs) 82 (49.4%) 37 (22.3%) 17 (10.2%) 27 (16.3%) 3 (1.8%)
Linear bounded automata (LBAs) 28 (16.9%) 15 (9.0%) 12 (7.2%) 92 (55.4%) 19 (11.4%)
Other automata 38 (22.9%) 21 (12.7%) 13 (7.8%) 70 (42.2%) 24 (14.5%)
Regular expressions 121 (72.9%) 27 (16.3%) 10 (6.0%) 5 (3.0%) 3(1.8%)
Regular languages 111 (66.9%) 28 (16.9%) 14 (8.4%) 10 (6.0%) 3(1.8%)
Proving that a language is not regular 84 (50.6%) 37 (22.3%) 16 (9.6%) 19 (11.4%) 10 (6.0%)
Context-free grammars 104 (62.7%) 29 (17.5%) 16 (9.6%) 14 (8.4%) 3(1.8%)
Context-free languages 100 (60.2%) 29 (17.5%) 16 (9.6%) 16 (9.6%) 5 (3.0%)
Proving that a language is not context-free 70 (42.2%) 34 (20.5%) 18 (10.8%) 35 (21.1%) 9 (5.4%)
Context-sensitive languages 35 (21.1%) 19 (11.4%) 14 (8.4%) 80 (48.2%) 18 (10.8%)
Context-sensitive grammars 34 (20.5%) 18 (10.8%) 15(9.0%) 81 (48.8%) 18 (10.8%)
Topics in computability theory
(nondeterministic) Turing machines 93 (56.0%) 37 (22.3%) 13 (7.8%) 22 (13.3%) 1(0.6%)
Recursive languages 89 (53.6%) 32 (19.3%) 11 (6.6%) 28 (16.9%) 6 (3.6%)
Recursively enumerable languages 76 (45.8%) 33 (19.9%) 13 (7.8%) 32 (19.3%) 12 (7.2%)
Decidability and undecidability 88 (53.0%) 35 (21.1%) 14 (8.4%) 25 (15.1%) 4 (2.4%)
Mapping reductions 67 (40.4%) 32 (19.3%) 10 (6.0%) 42 (25.3%) 15 (9.0%)
Rice’s theorem 36 (21.7%) 28 (16.9%) 13 (7.8%) 66 (39.8%) 23 (13.9%)
Chomsky hierarchy 69 (41.6%) 25 (15.1%) 12 (7.2%) 44 (26.5%) 16 (9.6%)
Lambda calculus 24 (14.5%) 25 (15.1%) 20 (12.0%) 72 (43.4%) 25 (15.1%)
General recursive functions 58 (34.9%) 22 (13.3%) 8 (4.8%) 62(37.3%) 16 (9.6%)
Church-Turing thesis 83 (50.0%) 35 (21.1%) 8(4.8%) 31(18.7%) 9 (5.4%)
Topics in basic complexity theory
Turing machine time complexity 71 (42.8%) 36 (21.7%) 10 (6.0%) 38 (22.9%) 11 (6.6%)
Complexity classes (P, NP, EXP, etc.) 121 (72.9%) 24 (14.5%) 5(3.0%) 13 (7.8%) 3(1.8%)
Turing machine space complexity 38 (22.9%) 30 (18.1%) 16 (9.6%) 60 (36.1%) 22 (13.3%)
Polynomial-time reductions 91 (54.8%) 24 (14.5%) 4(2.4%) 35(21.1%) 12 (7.2%)
Cook-Levin theorem 51 (30.7%) 25 (15.1%) 11 (6.6%) 55 (33.1%) 24 (14.5%)

in one or many courses within a curriculum, in different orders
and to different degrees. For each of our three topic categories (au-
tomata theory, computability theory, and basic complexity theory),
we asked respondents:

List the name and course number of the course at
your institution in which most students who encounter
[topic category] first encounter it at significant depth.
[emphasis added]

We then asked follow-up questions about the courses that respon-
dents identified. We intentionally left some ambiguity in the phras-
ing of this question (specifically, the qualifiers “most students” and
“at significant depth”) to allow the experienced faculty members
responding to our survey to select the most appropriate course
from multiple possibilities. Additionally, we prompted respondents
to identify if students first encountered multiple topic categories in
the same course (for example, if students first encountered many of
the topics in our list in a single “Theory of Computation” course).

After respondents identified 1-3 “ToC courses” in which students
first encountered each topic category in significant depth, we asked
whether each topic on our list appeared in at least one listed “ToC
course.”

4.3.1 Automata Theory. 149 respondents (89.8%) identified at least
one course offered at their institution in which topics in automata
theory were covered. 17 responses (10.2%) did not identify such a
course.

Figure 3 summarizes, for each topic in the automata theory
category of our topic list, whether this topic was covered in at least
one of the ToC courses previously identified by the respondent.’

SBecause we did not differentiate between ToC courses for this question, this would
include an automata theory topic covered in the course in which students first encoun-
tered complexity theory as “covered”, even if this was not the same course in which
students first encountered automata theory. We chose to group all 1-3 identified ToC
courses together in this way because we did not expect distinctions between them to
be consistent between respondents.

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

Automata Theory Topic Coverage

Covered Unsure Not Covered
Regular
expressions R
Finite automata 147 5/ 14
Regular languages 144 7 15
Context-free
grammars i ° i
Proving a language
Is not regular e ° e
Context-free
languages 135 10 21
Pushdown
automata = Z
Proof techniques 122 9 35
Proving a language
is not context-free 2 £
Other automata 66 26 74
Context-sensitive
languages e £ e
Context-sensitive
grammars 7 2 L
Linear bounded
automata 50 2 A
0% 25% 50% 75% 100%

Figure 3: Topics in automata theory covered in at least one
identified ToC course; unsure; not covered.

More than 87% of the responses indicated that regular expres-
sions, finite automata, and regular languages (three closely re-
lated topics) were covered in at least one “ToC course”. Similarly,
more than 80% of responses indicated that context-free grammars,
context-free languages, and pushdown automata were covered.
Fewer than 40% of responses reported that topics related to other
automata and language classes were covered in at least one “ToC
course”.

4.3.2 Computability Theory. 142 respondents (88.5%) identified
at least one course offered at their institution in which topics in
computability theory were covered. 24 responses (11.5%) did not.

Figure 4 summarizes the coverage of computability theory topics
in identified ToC courses. The topics most frequently identified as
covered in at least one ToC course were Turing machines (88.5%)
and undecidability (80.7%). At least two-thirds of the responses
also included recursive (71.1%) and recursively enumerable (67.5%)
languages and the Church-Turing thesis (71.7%). Fewer than 40%
of responses included other models of computation equivalent to
Turing machines.

4.3.3 Basic Complexity Theory. 150 respondents (90.4%) identified
at least one course offered at their institution in which topics in
basic complexity theory were covered. 16 responses (9.6%) did not.

Figure 5 summarizes the coverage of basic complexity theory
topics in one of the identified ToC courses. Complexity classes
(84.3%) was the only topic that more than 75% of respondents iden-
tified as covered in one of the identified courses. At least 70% of
responses also included polynomial-time reductions (71.1%) and

Ryan E. Dougherty et al.

Computability Theory Topic Coverage

Covered Unsure Not Covered

Turing machines 142 7 17
Decidability and

undecidability 7 =

Church-Turing thesis 19 15 32

Recursive languages 18 14 34
Recursively

enumerable languages U2 L <0

Mapping reductions 102 21 43

Chomsky hierarchy 98 24 44

Rice's theorem 67 35 64

General recursive @ 2 a1
functions

Lambda calculus 38 32 96

0% 25% 50% 75% 100%

Figure 4: Topics in computability theory covered in at least
one identified ToC course; unsure; not covered.

Complexity Theory Topic Coverage

Covered Unsure Not Covered
Comploxiy cocees w W
P“'V"‘r’g‘jﬂjﬂ?g 118 13 35
e ompiexty - 3
CosleLovn Boow =
spate ompiony LI 7
0% 25% 50% 75% 100%

Figure 5: Topics in basic complexity theory covered in at least
one identified ToC course; unsure; not covered.

Turing machine time complexity (69.9%). Both the Cook-Levin the-
orem (47.0%) and Turing machine space complexity (41.6%) were
included in fewer than half of the responses.

4.4 Course Logistics

In the previous subsection, we summarized the primary ToC courses
identified by respondents: those in which most students at their
institution first encounter automata theory, computability theory
and complexity theory in significant depth. Because the division
between topic categories is somewhat arbitrary and our intention
in this survey is to capture the diversity of ToC courses, in the fol-
lowing subsection we summarize data per course, counting multiple
courses described by the same respondent separately in summary
data.

A Survey of Undergraduate Theory of Computation Curricula in the United States

ToC Course Prerequisites

Intro to CS 65.6% (171)

Data Structures 62.8% (164)
Discrete Math 74.0% (193)

Algorithms 19.9% (52)

Linear Algebra 6.5% (17)
Other CS 10.7%|(28)
Other Math 14 6% (38)
0% 25% 50% 75% 100%

Figure 6: Prerequisite courses listed for all identified ToC
courses.

4.4.1 Prerequisite Courses. Of the 261 ToC courses listed by re-
spondents, we recorded the number that required each of the fol-
lowing course options as prerequisites:

e Discrete Mathematics or similar course (193, 74.0%)

o Introduction to Computer Science / Programming or similar
course (171, 65.5%)

Data Structures or similar course (164, 62.8%)

Algorithm Design & Analysis or similar course (52, 20.0%)
Linear Algebra or similar course (17, 6.5%)

Other computer science course(s) (28, 10.7%)

e Other math course(s) (38, 14.6%)

The most common prerequisite course was Discrete Mathematics,
which was required for nearly three quarters of all ToC courses
listed by respondents. It was followed by Introduction to Computer
Science / Programming and Data Structures, respectively. Other
prerequisites were much less common. Respondents wrote in the
following additional prerequisite courses:

e Discrete Structures (2)
e Computer Architecture
o Theory of Computation

4.4.2 Section Size. Respondents reported section sizes for 252 ToC
courses (9 respondents did not indicate a section size for one or
more previously mentioned courses.) The reported section sizes
broke down as follows:

9 or fewer students (26, 10.3%)

10-19 (63, 25.0%)

20-29 (90, 35.7%)

30-59 (46, 18.2%)

60-119 (18, 7.1%)

120-249 (7, 2.8%)

250 or more (2, 0.8%)

The majority of responses (60.7%) indicated section sizes between

10-29 students, with a plurality of responses indicating 20-29 stu-
dents. Most (89.3%) classes had under 60 students in total.

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

Size of ToC Courses
100 90

75 63

50

2

9orfewer 10-19 20-29 30-59 60-119 120-249 250+

Figure 7: Section size listed for all identified ToC Courses.

Number of Sections

121
125

100
75 62
50

25 12 10 9 1
4 1 1

0 . o

0 1 2 3 4 5 6 7 8 g 10+

Figure 8: Approximate number of sections offered annually
for all identified ToC Courses.

Almost half of responses (121, 47.8%) indicated that their insti-
tution offered approximately one section of a certain ToC course
per year. Significant minorities indicated approximately two (62,
25.4%) and approximately three (21, 8.3%) sections per year. Figure 8
summarizes the number of sections offered.

4.4.3 Format of Instruction. The vast majority of the instruction
in the theory courses we surveyed was done via lectures, with a
significant portion of those also including a problem solving session.
We allowed respondents to select multiple options.

Respondents indicated that 227 courses out of 253 for which we
recieved answers (89.7%) were taught in the lecture format (either
as a “Lecture” or a “Lecture with Problem Session”, or both). Figure 9
summarizes the number of sections offered for each type of course
format.

4.4.4 Use of Student Helpers . Of the ToC courses listed by respon-
dents, only about a third of the sections employed student helpers
(teaching assistants, instructional assistants, or other student work-
ers in similar roles). Figure 10 summarizes the number of TAs per
section of ToC courses reported by respondents.

4.5 Instructor Demographics

In addition to data regarding specific ToC courses, we also asked
respondents to answer several questions regarding the instructors

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

ToC Course Format

Lecture 49 8% (126)

Lecture +
Problem Session 43.9% (111)
Project-Based

Learning 16.2% (41)

Flipped

Classroom 10.7% (27)

0% 25% 50% 5% 100%

Figure 9: Course format of the ToC courses reported by re-
spondents. Respondents could select multiple options for a
single course.

Number of TAs
200

165
150

100

50

0 1 2 3-4 57 8-10 1115 16+

Figure 10: Number of TAs per section in the ToC courses
reported by respondents.

teaching ToC courses. Because different instructors might teach
different ToC courses during different periods of time, we made
no attempt to link these questions to the specific ToC courses con-
sidered in previous questions. Instead, we asked less specifically
about the (approximate) fraction of theory-focused courses taught
by faculty members of different types.

We first asked respondents about the professional roles of in-
structors teaching ToC courses (Figure 11).° The most common
instructor category was permanent teaching-focused CS faculty:
88 respondents (63.3% of respondents who answered this subques-
tion, 53.0% of total) reported that ‘most’ or ‘all or nearly all’ of
their ToC classes are taught by faculty members in this category.
51 respondents (42.5% of answered, 30.7% of total) reported that
‘most’ or ‘all or nearly all’ of their ToC classes are taught by per-
manent research-focused CS faculty. (Some respondents did not
interpret these responses as mutually exclusive: 21 (12.7% of total)
fell into both categories.) In contrast, only 11 respondents reported
that ‘most’ or ‘all or nearly all’ of their ToC classes were taught by
instructors in any of the ‘Adjunct CS faculty’, ‘Non-CS faculty’, or
‘Other’ categories. The strong bias towards permanent members
6Some ambiguity was introduced by the fact that different numbers of respondents
chose to leave each subquestion blank; this might indicate a response similar to “Few

or none”, “Unsure”, or something else. We provide percentages calculated with and
without those who chose to skip the subquestion.

Ryan E. Dougherty et al.

Type of Faculty Teaching ToC Courses
B All or Nearly All ToC Courses Taught by This Category

B Most m Some Few or none No response
Resarcgél:'[::géﬁﬁg 21 = =
Teachmgélilczngﬁﬁg = = =

Adjup;:(t:ﬁg 17 91 53
Non-CS Faculty f: @ 98 55
Other g2 89 72

0% 25% 50% 5% 100%

Figure 11: Number of institutions at which “all or nearly all”,
“most”, “some”, or “few or none” ToC courses are taught by
faculty in different roles.

of a CS faculty may reflect the pool of instructors at institutions
that teach ToC (and perhaps have large, well-established CS de-
partments) rather than a trend specific to ToC courses. Still, it is
somewhat surprising to see so few adjunct faculty represented in
our sample.

Moreover, a significant number of institutions in our sample
reported that ToC courses were taught by faculty members with a
research focus in ToC or algorithm design. 39 respondents (32.0%
of answered, 22.9% of total) reported that “all or nearly all” ToC
courses at their institution were taught by faculty members with
a primary research interest in ToC or algorithm design. A similar
number (38 respondents, 19.2% of answered, 23.5% of total) reported
that “all or nearly all” ToC courses at their institution were taught
by faculty members with a primary research interest in another
area of CS. Finally, a substantial portion of respondents reported
some instructors in both categories: 61 respondents (36.7% of total)
reported that at their institution at least ‘some’ ToC instructors’
research focuses on ToC or algorithm design and at least ‘some’
ToC instructors’ research focuses on another area of CS, reflecting
institutions at which a mix of theorists and non-theorists teach ToC
courses.

4.6 Tool Use in ToC courses

In a final survey section we asked respondents which digital tools
they or their colleagues use when teaching ToC courses at their
institution. We asked questions about two tool categories: (a) click-
ers and polling platforms and (b) ToC-specific digital tools (such as
tools for drawing finite state automata).

The following digital tools were reported as used in at least one
theory-focused course by at least one respondent:

e Clickers (8)

e Kahoot! (7)

o Poll Everywhere (6)
e Mentimeter (3)

e Socrative (3)

A Survey of Undergraduate Theory of Computation Curricula in the United States

Research Foci of Faculty Teaching ToC Courses

M All or Nearly All ToC Courses Taught by This Category
W Most Some Few or none No response

ToC Researcher 61 44

o o 2 “

g =

Resr;gpcgl'?j' & B

Non-Research 66 38
0% 25% 50% 75% 100%

Figure 12: Number of institutions at which “all or nearly all”,
“most”, “some”, or “few or none” ToC courses are taught by
faculty with different research foci.

In short, very few respondents reported using the polling methods
we included in the survey.

A significant minority of respondents (49 participants, 29.5%)
reported using at least one of the ToC-specific digital tools we
prompted. At least one respondent reported using the following
ToC-specific tools in at least one theory-focused course at their
institution:

e JELAP (40)

e FSM Designer (9)

e AutomataTutor (4)

e State Machine Cat (3)

With the exception of the popular software package JFLAP, the
ToC-specific tools we polled were used in very few classrooms.

5 Discussion and Discoveries

In this section, we summarize insights gained from and trends
observed in our data. In keeping with the exploratory nature of our
survey, we emphasize that our conclusions are preliminary: we aim
to establish a variety of plausible hypotheses rather than to provide
final answers.

5.1 The Theory of Computation “Core”

The most universal theory topic (perhaps a prerequisite topic) in our
topic list was “proof techniques”, which over 90% of respondents
listed as present in a required course. While “proof techniques”
was unique in its ubiquity, respondents listed several other topics
in our topic list as both commonly required in CS curricula and
usually present in the primary ToC courses they identified. By topic
category, these were the following:

5.1.1 Core Automata Theory Topics. Topics in the automata cate-
gory fall into three rough groups: those present in the vast majority
of curricula, those present in most curricula, and those present in a
significant minority of curricula.

There were five automata topics that had at least 60% of respon-
dents list as “required”:

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

(1) Regular expressions (72.9%)

(2) Deterministic/nondeterministic Finite Automata (66.9%)
(3) Regular languages (66.9%)

(4) Context-free grammars (62.7%)

(5) Context-free languages (60.2%)

If we add the number of respondents who said that a regularly
offered non-required (elective) course covered each of these topics,
we can safely conclude that at least 80% of our respondents regularly
cover these topics in their curriculum (Table 1). This aligns with
the subsequent finding that more than 80% of respondents reported
that at least one identified ToC course covers these topics (Figure 3).
Around half of respondents listed an additional three topics as
“required":

(1) Proving that a language is not regular (50.6%)
(2) Pushdown automata (49.4%)
(3) Proving that a language is not context-free (42.2%)

For each of these topics, a majority of respondents indicated that
they offer it regularly in the curriculum. These eight topics are
exactly those concerned specifically with (1) regular languages and
(2) context-free languages. The remainder of topics in the automata
category are present in the curricula of many institutions, but only
a distinct minority of respondents offer them regularly.

A significant fraction of courses in which students first encoun-
tered automata theory were courses concerned with discrete math-
ematics, programming languages or compilers (see Section 5.3.1).
We speculate that these courses might be less likely to cover non-
regularity and pushdown automata.

5.1.2 Core Computability Theory Topics. None of our listed com-
putability theory topics had more than 60% of respondents indicate
that their curriculum requires the topic. However, several are com-
monly required:

(1) Deterministic or Nondeterministic Turing Machines (56.0%)
(2) Recursive Languages (53.6%)

(3) Decidability and Undecidability (53.0%)

(4) Church-Turing Thesis (50.0%)

(5) Recursively Enumerable Languages (45.8%)

(6) Chomsky hierarchy (41.6%)

(7) Mapping reductions (41.6%)

Including regularly-offered elective courses, each of these topics
appeared regularly in the curricula of institutions represented by
between 56.6% and 78.3% of 166 respondents, a clear majority. No
other topic in the computability category appeared regularly in the
curricula for more than half of respondents, or appeared in a named
ToC course for more than half of respondents.

Our data on computability theory coverage aligns with several
observations due to Blumenthal [5]. Michael Sipser’s Introduction to
the Theory of Computation is the most popular textbook used in ToC
classrooms [5], and it relegates Rice’s Theorem to an exercise [28].
This might help to explain why Rice’s theorem appeared regularly
in the curriculum of only 64 institutions in our sample (38.6%). Our
results also agree with Blumenthal’s observation [5] that despite
covering the Church-Turing thesis, ToC courses tend not to cover
any models that are equivalent in power to Turing machines. We
asked about two such models (general recursive functions and

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

lambda calculus) and neither was covered by greater than 40% of
respondents.

5.1.3 Core Complexity Theory Topics. The majority of institutions
(72.9%) reported covering complexity classes (P, NP, EXP, etc.) as
a part of a required course. This was the only listed topic outside
of the automata theory category to be required to a similar extent
as the five most often required automata theory topics. Most in-
stitutions also reported covering polynomial-time reductions and
Turing machine time complexity in at least some regularly offered
required or elective course.

As discussed in Section 5.3, many respondents expect their stu-
dents to encounter basic complexity theory in an algorithms course.
This may explain the relative lack of coverage of the Cook-Levin
Theorem despite coverage of complexity classes and polynomial-
time reductions.”

5.2 The “Typical” Theory Course

For reasons previously discussed (see Section 3.4), we cannot as-
sume our respondents represent “typical” CS programs. However,
we can summarize the common characteristics of the ToC courses
described by our respondents, which may be more representative
of those institutions specifically offering ToC. Within our sample,
a “typical ToC course”

(1) requires a course in Discrete Mathematics, and is more likely
than not to require Introduction to Computer Science or
Programming and Data Structures courses as well.

(2) enrolls between 10 and 29 students.

(3) is taught primarily via lecture, perhaps with sessions devoted
to group problem-solving.

(4) is slightly more likely to be taught from the whiteboard or
blackboard than via a slide deck, although both are common.

(5) is taught by a permanent faculty member primarily focused
on teaching or research. This faculty member is very likely
to be a computer scientist, and is roughly equally likely to
conduct research in either Algorithms or ToC, or in another
area of computer science.

(6) employs 2 or fewer teaching assistants, and may have none.

(7) is unlikely to use digital tools.

The above description is intended as a high-level summary to pro-
vide intuition about our results. It generalizes from plurality an-
swers, ignores correlations between answers and may not describe
any particular course. Nevertheless, it conveys the general trends
present in our data.

5.3 Course Naming Trends

In general, our survey focused on quantifiable metrics and did
not collect qualitative data about the ToC courses in our sample.
However, we did collect the names of ToC courses. While slight
differences in the names of courses may not allow us to infer any

"Recall that the Cook-Levin Theorem states that the Boolean satisfiability problem is
NP-complete, and provides the “first” NP-complete problem to be used in subsequent
reductions. The proof of the Cook-Levin theorem proceeds by construction of nonde-
terministic Turing machines. While this proof is often presented in courses dedicated
to complexity theory, in an algorithms course, it is not likely that Turing machines are
covered. As a result, in many algorithms texts [7, 17], the “first” NP-complete problem
is presented as the circuit satisfiability problem rather than satisfiability, avoiding the
need to introduce Turing machines.

Ryan E. Dougherty et al.

specific differences in course content, major differences in course
title (e.g., “Theory of Computation” vs. “Algorithm Design”) indicate
significant differences in the focus of a course.

5.3.1 Names of Courses Covering Automata Theory Topics. Of the
149 responses that identified a course in which students encoun-
tered topics in automata theory, about 66 responses (44.2%) con-
tained the phrase “theory of computation” or “theory of computing”
in the course title. This is in contrast with “theoretical computer sci-
ence”, which appears in only four course titles, and “computability”,
which appears in only six course titles. This points to an interesting
distinction between the three phrases.

The next most frequent term in course titles is “Language” (34
responses, 22.8%). There are roughly two kinds of courses that
contain the term “Language”. The first are traditional ToC courses,
with titles like “Languages and Automata” or “Introduction to For-
mal Languages”. There were 12 responses (8.0%) that identified
courses with the term “formal languages” in the title and 22 re-
sponses 14.8%), the most frequent term, identified courses with the
term “automata” in the course title. Note that these counts are not
exclusive—some courses contain both, e.g. “Formal Languages and
Automata Theory”.

The second group of courses are not traditional ToC courses, but
are courses on programming languages. There were 13 responses
(8.7%) that identified courses that contain “Programming Languages”
in the title. These are typically “programming language theory”
courses, though there are also 5 courses (3.3%) that contain the
term “compiler”. This means approximately one tenth of responses
identify a programming language theory or implementation course
as the primary course through which their students encounter
automata theory.

One more small group of respondents (5 responses, 3.3%) iden-
tified their courses contain the term “discrete”-these are discrete
math courses. 3 responses identified courses that contained the
term “mathematical foundations”, though it is unclear whether
these courses are discrete math courses or ToC courses.

5.3.2 Names of Courses Covering Computability Theory Topics. For
the primary course on computability topics, most responses identi-
fied the same course as the primary course on automata theory. Of
the 32 responses that identified a different course, most contained
the phrase “Theory of Computing”, “Computability”, or “Complex-
ity”. We note that some of the identified course titles and numbers
were repeated from the question identifying the primary automata

theory course.

5.3.3 Names of Courses Covering Basic Complexity Theory Topics.
69 respondents indicated that the same course primarily covering
topics in the basic complexity theory category was the same as
that covering at least one of automata theory or computability the-
ory. However, approximately one-third of responses (57 responses,
34.3%) identified a course with a title that contains the term “al-
gorithm” as the course where students encounter topics in basic
complexity theory. We suspect that many of these courses are fo-
cused on the design and analysis of algorithms and centered on the
“Algorithmic Strategies” knowledge unit of the 2023 ACM/IEEE-
CS/AAAI Curriculum [19]. This seems to agree with the survey

A Survey of Undergraduate Theory of Computation Curricula in the United States

by Luu el al. [20], which found that about half of identified algo-
rithms courses cover basic complexity topics, like P vs. NP and
NP-completeness.

Across all responses for the three identified courses, very few
course titles contained the phrase “Complexity”. This suggests that,
if students experience complexity theory in any significant detail
in their CS curriculum, they are unlikely to first encounter it in a
course devoted specifically to complexity theory.

5.4 Use of Digital Teaching Tools is Rare

Curiosity about the use of digital tools in the classroom was a
a significant motive for the design of our survey. As educators
in theory of computation, we were curious to learn what tools,
especially ToC-specific tools, were in use by our peers. However,
our data suggests that few ToC classes use digital tools. About a
quarter of respondents reported using general-purpose classroom
tools, such as clickers and autograders, and about a quarter of
respondents reported using ToC-specific tools. The landscape of
ToC-specific tools was fragmented: there is only one tool (JFLAP)
which more than 10% of survey respondents use. These negative
results suggest natural follow-up questions, including why most
instructors do not use digital tools, whether there is a perceived
need for such tools, and, if so, what specific features could be useful.

6 Open Questions & Future Work

Given the relative lack of computing education research on theory
of computation, we conceived this project as a preliminary survey.
We have attempted to provide productive insights, generate hy-
potheses to be tested, and emphasize gaps in our understanding for
future research to fill. As such, we close with a short list of open
questions:

(1) Open Question 1: What are the demographics of institu-
tions of higher education that offer theory of computation (or,
more broadly, theoretical CS), and how do these institutions
compare to other institutions teaching CS?

(2) Open Question 2: In this survey, we omitted several im-
portant subtopics in introductory CS, including formal logic
and programming language semantics. We also omitted ad-
vanced topics in algorithms and complexity theory. What is
the role of other theoretical CS topics in the curriculum?

(3) Open Question 3: This survey indicates that relatively few
ToC courses use ToC-specific tools, and many of those that
do use in-house tools developed specifically for the course.
It is possible that ToC courses are small because of a lack of
available tools, or vice versa. What is the cause and effect?

Other adjacent topics for future research include opinions of
students and faculty about theoretical CS, student performance in
ToC courses of different types, and meta-analysis of the body of
ToC-focused computing education research, among many others.

Data Availability

The data in this manuscript represents survey responses submitted
by 11 November 2024. In subsequent weeks we received additional
responses that expanded our data set slightly but did not materially
change the conclusions presented here.

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

A copy of the full survey data with identifying information
removed can be freely accessed here: https://github.com/twrand/
toc-survey-2025 .

Acknowledgments

The authors would like to thank Jacqueline Whalley and Juho
Leinonen for their editorial guidance and helpful feedback on an
earlier draft of this manuscript. We would also like to thank several
reviewers for their deep engagement with and thoughtful feedback
on our work, which greatly improved the final product even though
some suggestions could not be implemented due to time limitations.
The opinions in this work are solely of the authors, and do not
necessarily reflect those of the U.S. Army, U.S. Army Research Labs,
the U.S. Military Academy, or the Department of Defense.
Thomas Zeume is supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation), grant 448468041.

References

[1] Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh
Viswanathan. 2013. Automated Grading of DFA Constructions. In IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, Francesca Rossi (Ed.). [JCAI/AAAI 1976-1982.
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6759
Lillian Baker, Sierra Zoe Bennett-Manke, Sebastian Neumann, Ian Njuguna, and
Ryan E. Dougherty. 2025. TheoryViz: A Visualizer Tool for Theory of Computing
Concepts. In Proceedings of the 56th ACM Technical Symposium on Computer
Science Education V. 2 (Pittsburgh, PA, USA) (SIGCSETS 2025). Association for
Computing Machinery, New York, NY, USA, 1373-1374. https://doi.org/10.1145/
3641555.3705268
Sierra Zoe Bennett-Manke, Sebastian Neumann, and Ryan E. Dougherty. 2024.
Finite State Machine with Input and Process Render. In Proceedings of the 2024
on ACM Virtual Global Computing Education Conference V. 2 (Virtual Event, NC,
USA) (SIGCSE Virtual 2024). Association for Computing Machinery, New York,
NY, USA, 299-300. https://doi.org/10.1145/3649409.3691079
[4] Dave Berque, David K Johnson, and Larry Jovanovic. 2001. Teaching theory of
computation using pen-based computers and an electronic whiteboard. ACM
SIGCSE Bulletin 33, 3 (2001), 169-172.
Richard Blumenthal. 2022. Teach More, Not Less Computability Theory in
CS202X: A Case for Teaching Multiple Representations of the Church-Turing
Thesis. In Proceedings of the 53rd ACM Technical Symposium on Computer Sci-
ence Education - Volume 1 (Providence, RI, USA) (SIGCSE 2022). Association for
Computing Machinery, New York, NY, USA, 675-681. https://doi.org/10.1145/
3478431.3499309
[6] Lillian Cassel, Alan Clements, Gordon Davies, Mark Guzdial, Renée McCauley,
Andrew McGettrick, Bob Sloan, Larry Snyder, Paul Tymann, and Bruce W. Weide.
2008. Computer Science Curriculum 2008: An Interim Revision of CS 2001. Technical
Report. New York, NY, USA.
[7] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022.
Introduction to algorithms. MIT press.
Rafael del Vado Virseda. 2021. Learning from the Impossible: Introducing The-
oretical Computer Science in CS Mathematics Courses. In Proceedings of the
52nd ACM Technical Symposium on Computer Science Education (Virtual Event,
USA) (SIGCSE ’21). Association for Computing Machinery, New York, NY, USA,
952-958. https://doi.org/10.1145/3408877.3432475
Rafael del Vado Virseda. 2023. Theoretical Computer Science Education from
Impossibility and Undecidability Problems in Physics. In Proceedings of the 54th
ACM Technical Symposium on Computer Science Education V. 1 (Toronto ON,
Canada) (SIGCSE 2023). Association for Computing Machinery, New York, NY,
USA, 270-276. https://doi.org/10.1145/3545945.3569742
[10] Rafael del Vado Virseda. 2024. Introducing Theoretical Computer Science Ed-
ucation in Social Sciences and Economics Degrees. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 2 (Portland, OR,
USA) (SIGCSE 2024). Association for Computing Machinery, New York, NY, USA,
1620-1621. https://doi.org/10.1145/3626253.3635481
Ryan E. Dougherty. 2024. Designing Theory of Computing Backwards. In Pro-
ceedings of the 55th ACM Technical Symposium on Computer Science Education
V. 2 (Portland, OR, USA) (SIGCSE 2024). Association for Computing Machinery,
New York, NY, USA, 1628-1629. https://doi.org/10.1145/3626253.3635479
Ryan E. Dougherty. 2024. Experiences Using Research Processes in an Under-
graduate Theory of Computing Course. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 1 (Portland, OR, USA) (SIGCSE

—_
&,

—_
A

—
)

8

[

[11

[12

https://github.com/twrand/toc-survey-2025
https://github.com/twrand/toc-survey-2025
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6759
https://doi.org/10.1145/3641555.3705268
https://doi.org/10.1145/3641555.3705268
https://doi.org/10.1145/3649409.3691079
https://doi.org/10.1145/3478431.3499309
https://doi.org/10.1145/3478431.3499309
https://doi.org/10.1145/3408877.3432475
https://doi.org/10.1145/3545945.3569742
https://doi.org/10.1145/3626253.3635481
https://doi.org/10.1145/3626253.3635479

SIGCSE Virtual-WGR 2024, December 5-8, 2024, Virtual Event, USA

2024). Association for Computing Machinery, New York, NY, USA, 310-316.
https://doi.org/10.1145/3626252.3630849

[13] Ryan E. Dougherty. 2025. Scaffolding Mock Conference Projects in Theory
of Computing Courses. In Proceedings of the 56th ACM Technical Symposium
on Computer Science Education V. 2 (Pittsburgh, PA, USA) (SIGCSETS 2025). As-
sociation for Computing Machinery, New York, NY, USA, 1441-1442. https:
//doi.org/10.1145/3641555.3705243

[14] J. Philip East. 2006. On Models of and for Teaching: Toward Theory-Based
Computing Education. In Proceedings of the Second International Workshop
on Computing Education Research (Canterbury, United Kingdom) (ICER 06).
Association for Computing Machinery, New York, NY, USA, 41-50. https:
//doi.org/10.1145/1151588.1151596

[15] Jeff Erickson, Jason Xia, Eliot Wong Robson, Tue Do, Aidan Tzur Glickman,
Zhuofan Jia, Eric Jin, Jiwon Lee, Patrick Lin, Steven Pan, et al. 2023. Auto-graded
scaffolding exercises for theoretical computer science. In ASEE Annual Conference
and Exposition, Conference Proceedings.

[16] Association for Computing Machinery (ACM) Joint Task Force on Comput-
ing Curricula and IEEE Computer Society. 2013. Computer Science Curricula 2013:
Curriculum Guidelines for Undergraduate Degree Programs in Computer Science.
Association for Computing Machinery, New York, NY, USA.

[17] JonKleinberg and Eva Tardos. 2005. Algorithm Design. Addison-Wesley Longman
Publishing Co., Inc., USA.

[18] Joan Krone. 1992. Student Designed Machines for a Theory of Computation
Course. SIGCSE Bull. 24, 3 (sep 1992), 51-52. https://doi.org/10.1145/142040.
142075

[19] Amruth N. Kumar, Rajendra K. Raj, Sherif G. Aly, Monica D. Anderson, Brett A.

Becker, Richard L. Blumenthal, Eric Eaton, Susan L. Epstein, Michael Goldweber,

Pankaj Jalote, Douglas Lea, Michael Oudshoorn, Marcelo Pias, Susan Reiser,

Christian Servin, Rahul Simha, Titus Winters, and Qiao Xiang. 2024. Computer

Science Curricula 2023. Association for Computing Machinery, New York, NY,

USA.

Michael Luu, Matthew Ferland, Varun Nagaraj Rao, Arushi Arora, Randy Huynh,

Frederick Reiber, Jennifer Wong-Ma, and Michael Shindler. 2023. What is an

[20

[21

[22

[24

[25

[26

[28

Ryan E. Dougherty et al.

Algorithms Course? Survey Results of Introductory Undergraduate Algorithms
Courses in the US. In Proceedings of the 54th ACM Technical Symposium on
Computer Science Education V. 1. 284-290.

Mostafa Mohammed, Clifford A. Shaffer, and Susan H. Rodger. 2021. Teaching
Formal Languages with Visualizations and Auto-Graded Exercises. In Proceedings
of the 52nd ACM Technical Symposium on Computer Science Education (Virtual
Event, USA) (SIGCSE °21). Association for Computing Machinery, New York, NY,
USA, 569-575. https://doi.org/10.1145/3408877.3432398

Marco T Morazan. 2023. Programming-Based Formal Languages and Automata
Theory: Design, Implement, Validate, and Prove. Springer Nature.

Nelishia Pillay. 2010. Learning Difficulties Experienced by Students in a Course
on Formal Languages and Automata Theory. SIGCSE Bull. 41, 4 (jan 2010), 48-52.
https://doi.org/10.1145/1709424.1709444

Tim Randolph. 2024. Participatory Governance in the Computer Science Theory
Classroom. In Proceedings of the 55th ACM Technical Symposium on Computer
Science Education V. 1. 1091-1097.

Eliot Wong Robson, Sam Ruggerio, and Jeff Erickson. 2024. FSM Builder: A
Tool for Writing Autograded Finite Automata Questions. In Proceedings of the
2024 on Innovation and Technology in Computer Science Education V. 1 (Milan,
Italy) (ITiCSE 2024). Association for Computing Machinery, New York, NY, USA,
269-275. https://doi.org/10.1145/3649217.3653599

Marko Schmellenkamp, Fabian Vehlken, and Thomas Zeume. 2024. Teaching
Formal Foundations of Computer Science with Iltis. Bulletin of EATCS 142, 1
(2024).

Scott Sigman. 2007. Engaging Students in Formal Language Theory and Theory of
Computation. In Proceedings of the 38th SIGCSE Technical Symposium on Computer
Science Education (Covington, Kentucky, USA) (SIGCSE ’07). Association for
Computing Machinery, New York, NY, USA, 450-453. https://doi.org/10.1145/
1227310.1227463

Michael Sipser. 2013. Introduction to the Theory of Computation (3 ed.). Course
Technology.

https://doi.org/10.1145/3626252.3630849
https://doi.org/10.1145/3641555.3705243
https://doi.org/10.1145/3641555.3705243
https://doi.org/10.1145/1151588.1151596
https://doi.org/10.1145/1151588.1151596
https://doi.org/10.1145/142040.142075
https://doi.org/10.1145/142040.142075
https://doi.org/10.1145/3408877.3432398
https://doi.org/10.1145/1709424.1709444
https://doi.org/10.1145/3649217.3653599
https://doi.org/10.1145/1227310.1227463
https://doi.org/10.1145/1227310.1227463

	Abstract
	1 Introduction
	2 Related Work
	2.1 ToC Course Design
	2.2 ToC Classroom Experiments
	2.3 ToC Tools: Visualizations and Auto-Grading Systems

	3 Research Methods
	3.1 Survey Scope and Criteria for Participation
	3.2 Data Collection
	3.3 Survey Structure
	3.4 Survey Limitations

	4 Results
	4.1 Respondent Demographics
	4.2 Theory of Computation in the Curriculum
	4.3 Primary Theory of Computation Courses
	4.4 Course Logistics
	4.5 Instructor Demographics
	4.6 Tool Use in ToC courses

	5 Discussion and Discoveries
	5.1 The Theory of Computation ``Core''
	5.2 The ``Typical'' Theory Course
	5.3 Course Naming Trends
	5.4 Use of Digital Teaching Tools is Rare

	6 Open Questions & Future Work
	Acknowledgments
	References

